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In this work, TiO2 nanoparticles with graphite are used to coat duplex 
stainless steel (DSS) using the negative electrodeposition technique to 
protect it from corrosion. The anticorrosion performance of nanoparticle 
coatings that comprised a proper quantity of graphite particles was 
investigated using an open circuit potential and a potentiodynamic 
technique in a 1 M H2SO4 solution saturated with carbon dioxide. The 
corrosion rate of the DSS sample was lower when it was coated with 
TiO2/graphite than when it was uncoated, and the potential for corrosion 
increased from - 0.450 V for the uncoated DSS surface to - 0.410 V for the 
saturated calomel when it was coated with TiO2/graphite. Electrochemical 
studies discovered that TiO2/graphite coated DSS corrosion in sulfuric acid 
media had excellent protective qualities, with an effectiveness of 77.74 % 
when the current density was 0.957 milliamps per centimeter squared. It 
has been established by the findings of this study that duplex stainless steel 
can be protected against corrosion in acidic conditions by the application 
of protective coating layers. The surface morphology of TiO2/graphite 
coating has demonstrated that it may withstand an acid attack due to 
its high adherence to the surface sample. X-ray diffraction was used to 
improve the accuracy of measurements for determining and researching 
the composition of the alloy surface’s protective layer.

INTRODUCTION 
Stainless steels are an essential group of 

engineering alloys that have been used in a wide 
range of things, from household appliances to 
parts for spacecraft. Because of their austenitic and 
ferritic grains, duplex stainless steels (DSSs) can be 
very useful [1,2]. DSSs have higher toughness and 
weldability than ferritic ones [3–5]. DSSs are more 
resistant to pitting and stress corrosion cracking 
than austenitic grades [6]. As a result, they are 
widely utilized in the chemical, petrochemical, 
culinary, electricity, transportation, pulp and 

paper, and oil refinery industries. DSSs have higher 
toughness and weldability than ferritic ones [7,8]. 
DSSs are more resistant to pitting and stress 
corrosion cracking than austenitic grades [9]. DSSs 
have strong corrosion resistance due to their high 
Cr content combined with significant additions of 
Mo, Ni, and N. Chromium adds to stainless steel 
corrosion resistance by producing protective Cr-
oxide or hydroxide in the passive coating [10-12]. 
Due to the creation of a passive protective coating, 
stainless steels have a wide range of industrial 
uses due to their corrosion resistance [13]. 
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Chromium and other major alloying elements 
are to blame for this film. As sulfate anions are 
present, they destabilize at sites or regions of 
inclusions, impurities, grain boundaries, and 
other faults that cause localized corrosion [14]. 
Because of chromium and other essential alloying 
elements, this film exists. It destabilizes in the 
presence of aggressive sulfate anions, particularly 
at inclusions, impurities, grain boundaries, and 
other imperfections that cause localized corrosion. 
Sulfuric acid, the world’s most essential and 
frequently used industrial chemical, is the primary 
source of corrosive sulfates [15,16]. Its corrosivity 
to stainless steel alloys varies according to 
concentration and alloy type [17]. The majority of 
sulfuric acid encountered is in diluted proportions 
for various chemical processes, including mineral 
processing, petroleum production, and water 
treatment [16,18]. Alloy metals like nickel and 
chromium can be added to steel to increase 
corrosion and oxidation resistance, creating high-
alloy steel like duplex stainless steel [19,20]. The 
use of corrosion-resistant materials is desirable 
in most circumstances where cost is considered 
[21]. Ferrous metals have long been protected 
against corrosion by applying corrosion inhibitors 
[22]. Electron-sharing and film-forming activity is 
the fundamental processes of inorganic corrosion 
inhibitors [23]. Organic coatings are commonly 
utilized in industry to protect metals from 
corrosion [24]. Ceramic coatings are also preferred 
over metal coatings because they are more 
resistant to oxidation, corrosion, erosion, and 
wear than metals in high-temperature conditions 
[25]. Nanoparticles are employed to improve 
hybrid sol-gel coatings’ corrosion resistance and 
mechanical qualities [26-28]. Nanoparticles reduce 
fractures and porosity in nanocomposite coatings 
[29]. Nanoparticles can be introduced as a powder 
to coat materials or created during the creation 
of sol-gel coatings [30]. As a result, in this work, 
to improve the corrosion resistance of duplex 
stainless steel, we decided to take advantage of 
the beneficial features of nanoparticles, which 
were discovered through previous research. The 
DSSs were coated with titanium nanoparticles 

containing graphite (TiO2/graphite) using a 
negative electrodeposition technique at a constant 
temperature. Electrochemical methods such as 
open circuit potential (OCP), and potentiodynamic 
(PD) were used to study the protection of DSSs at 
a constant temperature (298.15 K). Two surface 
morphology techniques, field emission scanning 
electron microscopy (FESEM) and energy-
dispersive X-ray spectroscopy (EDS), were used 
to identify the nature of the coated surface. As 
a result, X-ray diffraction (XRD) was utilized in 
conjunction with the other tests, as it is a vital 
non-destructive technique for determining the 
alloy’s protective film composition.

MATERIALS AND METHODS
Table 1 lists the components of the DSS samples. 

The following dimensions and thickness (2 cm x 2 
cm) were used to build a piece (1 cm). Following 
polishing with emery sheets of varying diameters, 
all specimens were subsequently lubricated with 
diamond paste applied to an ultra-thin soft cloth. 
Sulfuric acid in deionized water saturated with 
carbon dioxide was utilized as an electrolyte 
solution to evaluate the protective effects of TiO2 / 
graphite on the DSS electrode surface.

A TiO2/graphite layer was electrodeposited on 
the DSS using a glass cell with a volume of 200 cm3 
and a DSSs electrode sandwiched between two 
parallel titanium metal electrodes. The electrodes 
were separated by 0.3 cm. The electrolyte, which 
contained 1.5 g/L TiO2 and 0.5 g/L graphite, was 
agitated using a magnetic stirrer. The negative 
electrodeposition was performed for 2.5 minutes 
at a continuous DC voltage of 150 V, with the 
electrolyte held at 333.15 K. The samples were 
air-dried for 24 hours at room temperature before 
being stored in a desiccator until further testing. 
The corrosion electrochemical cell was coupled to 
a potentiostat device to determine comprehensive 
electrochemical parameters. FESEM (ZEISS 
Gemini, Germany, LTD. Company) was used to 
characterize specimens. The compositions of the 
chemical components were determined using EDS 
spectra. The XRD patterns were captured using the 
Bruker D6 Advanced diffraction system and a Cu  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elements C Mn Al Si Mo Ni Cr Fe 

Wt% 0.12 0.68 0.08 2.10 0.23 10.11 18.20 balance 

Table.1 Composition of DSS



618

M. N. Majeed and Q. A. Yousif / Graphite-Enhanced TiO2 NPs Protect Duplex Stainless Steel against Acidic Corrosion

J Nanostruct 12(3): 616-624, Summer 2022

radiation source.

RESULTS AND DISCUSSION 
As a function of immersion time, the fluctuation 

can be used to determine the DSS coating in OCP. 
Fig. 1 illustrates the evolution of the open circuit 
potential with time for DSS in 1 M H2SO4 solution 
without and with coated protection. The curves 
demonstrate that the TiO2/graphite protective 
layer significantly alters the temporal behaviour 
of the OCP. It is determined that it is a cathodic 
displacement of DSS in the absence of protection. 

However, when the cathodic (active) direction is 
protected by a TiO2/graphite layer, the potential 
change in the cathodic (active) direction is more 
pronounced. OCP curve profiles with TiO2/graphite 
coating exhibit typical anodic tendencies. On the 
other hand, the OCP values stayed steady in the 
latter case, moving slightly into the 1000s. This 
could indicate that a protective covering attaches 
to the surface of the DSS.

The polarization curves of an uncoated DSS and 
a TiO2/graphite coated DSS are shown in           Fig. 
2. The corrosion potential (Ecorr), the current 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type coating βa×10-3 

(V/decade) 
βc×10-3 

(V/decade) 
icorr 

( A/cm²) 
Ecorr 

(mV vs. SCE) 
Corrosion Rate 

( mpy) %ηpr. 

Blank 171.6 192.5 4.3×10-3 -450.0 1.967×103 - 

TiO2-C 115.2 107.3 957×10-6 -410.0 437.5 77.74 

Fig. 1 OCP curves without and with coating layers of TiO2/graphite on the DSS surface.

Table 2 Parameters of Potentiodynamic curves without and with coating layers of TiO2/graphite on the DSS surface.
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density value (icorr), the anodic Tafel constant (βa), 
the cathodic Tafel constant (βc), and the corrosion 
rate (CR) are all determined using these curves. 
The output of this calculation is summarized 
in Table 2. It was discovered that the coated 
specimen had a lower current density than the 

untreated DSS specimen. The coated sample’s 
corrosion potential is changed from cathodic to 
anodic. This result indicates the coating’s corrosive 
medium resilience. The following calculation can 
determine the percentage of protection efficiency 
based on corrosion current density measurements 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Potentiodynamic curves without and with coating layers of TiO2/graphite on the DSS surface.

Miller index Intensity d-spacing (nm) Crystallite Size D 
(nm) FWHM (β) Peak Position          

(2-theta) 

(111) 607 0.20 17.75 0.49 43.62 
(110) 295 0.19 29.69 0.29 44.56 
(200) 177 0.17 22.78 0.39 50.52 
(200) 32 0.14 16.27 0.59 64.87 
(220) 89 0.12 17.27 0.59 74.65 

TiO2/graphite 
(110) 59 0.31 28.28 0.29 27.58 
(101) 29 0.24 14.45 0.59 36.17 
(111) 417 0.20 25.36 0.34 43.65 
(110) 176 0.19 44.54 0.19 44.63 
(200) 117 0.17 13.02 0.68 50.63 
(242) 30 0.16 18.53 0.49 54.44 
(220) 77 0.12 17.27 0.59 74.63 

 

 

 

Table 3 XRD analysis peaks of DSS surface and a coating layer of TiO2/graphite.
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[31] (%PE).

%PE =  [(𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑖𝑖(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)/𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] × 100                                

 
icorr, and i(coating)corr are the corrosion current 

densities values in uncoated and coated, 
respectively.

Coating type TiO2/graphite significantly reduced 
the corrosion current densities, which decreased 
from 4.3 milliamps per cm2 for the uncoated DSS 
to 0.957 milliamps per cm2 for the coated DSS. 
Because the coating layer has a lower corrosion 
rate (CR) than the untreated surface (437.5 mpy), 
the coating layer has a lower corrosion rate 
(CR). As previously stated, the corrosion current 
density of the TiO2/graphite coated surface is 
smaller than that of the uncoated surface, and the 
percent PE is higher on the covered surface than 
on the uncoated surface. TiO2/graphite coatings 
provided better corrosion protection due to the 
nanoparticles and charged graphite particles 
adhering to the electrode surface and insulating 
it from corrosive chemicals [32] such as chloride 

ions, hydrogen gas and oxygen.
A thin TiO2/graphite coating applied to the DSS 

surface in 1 M sulfuric acid solution lowered the 
cathodic and anodic slopes, implying that a thin 
protective film on the alloy surface influenced the 
hydrogen generating mechanisms. As previously 
stated, it is evident that the hydrogen evolution 
reaction could be controlled, and the mechanism 
of the proton discharge reaction [33] varied 
according to the protective approach used.

The X-ray diffraction peaks of the protective 
layer’s porous alloy surface and crystalline phases 
were recorded and are summarized in Table 3. 
The strong peaks at 43.620, 50.520, and 74.650, 
respectively, can be attributed to the diffraction 
of (111), (200), and (220) Miller planes, which 
are characteristic of NiFe elements [34] in DSS 
alloys with a face-centered cubic (fcc) structure, 
as illustrated in Fig. 3. Additionally, two weak 
peaks arise at two values of 44.560 and 64.870, 
corresponding to the iron diffraction planes (110) 
and (200). The products have an fcc-type NiFe 
matrix within a DSS alloy based on fcc-type Ni, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 X-ray diffraction patterns of DSS surface and coating layers of TiO2/graphite.
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with Fe atoms substituting for some Ni. 
A significant concentration of iron atoms in the 

NiFe matrix is visible in the pattern, indicating that 
the porous material is composed mostly of iron. 
The XRD patterns of TiO2/graphite are depicted 
in Fig. 3. The diffraction peaks confirmed the thin 
crystallinity and purity of the coating layers, which 
showed that there were no diffraction peaks 
associated with any impurities in the coating 
layers. 

As seen in Table 3, the TiO2/graphite coating 
layers contributed to the high diffraction peaks 
at 27.580 and 36.170 associated with titanium 
dioxide’s rutile [35-36] phase. The absence of 
graphite’s diffraction peak may be attributable 
to its integration with TiO2 at ≈ 270 or the 
reduced graphite concentration in the TiO2/
graphite composite. Additionally, as shown 
in Table 3, the XRD pattern exhibits the same 
diffraction peaks as the DSS surface but varying 
intensities. TiO2/graphite has an average particle 

diameter of 23.06 nm. The findings revealed 
additional differences in the particle sizes of the 
protective layer formed on the DSS surface by the 
electrodeposition methodology, indicating that 
earlier electrochemical approaches revealed a 
noticeable shift in protection. An EDX spectrum 
of the uncoated DSS is shown in Fig. 4, along 
with FESEM images and mapping spectra. Image 
A shows further cracking layers formed due to 
corrosion, suggesting that the metal has suffered 
substantial surface damage due to its breakdown. 
As illustrated in Fig. 5, the TiO2/graphite layer that 
has been created on the DSS surface protects it 
from corrosion (image A). 

It demonstrates that the coatings formed on 
the DSS alloy surface are more homogeneous 
and dense than those formed on other surfaces. 
Because of the density of the deposited layer, 
there are no cracks or separation of the coatings 
with obvious superficial cracks. This is due to the 
high quality of the coating applied. All of these 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 FESEM image (A), EDX analysis (B), and mapping spectrum (C) of DSS surface 
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findings are in agreement with the electrochemical 
measurements that were taken during the 
corrosion tests.

The EDS elemental analysis is shown in Fig. B 
(Fig. 5), which indicates a higher Ti content related 
to the type of coating layer. Besides, the oxygen 
and carbon contents were 23.6% and 7.6%, 
respectively. The iron element content changed 
from 46.8% to 2.7% in the presence of a TiO2/
graphite coating layer. Besides, the elements were 
detected by the mapping distribution analysis in 
the uncoated DSS and TiO2/graphite related to the 
contents of components, as shown in image C in 
Figs. 4 and 5.

CONCLUSION 
This work reveals that TiO2/graphite is an 

excellent coating effectively formed on a DSS 
specimen using the electrodeposition method and 
exhibits excellent corrosion resistance in sulfuric 
acid solution (1M) saturated with carbon dioxide. 

Electrochemical tests found that coating the DSS 
surface with TiO2 and graphite particles reduced 
corrosion current densities, resulting in higher 
polarization resistance in corroded acidic solutions. 
It takes less time to generate a homogeneous, 
compact, and adherent TiO2/graphite coating at 
high voltage. Electrochemical experiments were 
utilized to determine the protective layer coating’s 
indirect resistance. Current density and corrosion 
potential are notably different for the TiO2/graphite 
layers than for the DSS sample. The OCP results 
agree with the potentiodynamic measurements. 
This study reveals that the TiO2/graphite coating 
layer has high corrosion resistance and might 
be used to protect duplex stainless steel against 
corrosion in a 1 M H2SO4 solution. FESEM confirms 
these results, corroborated by EDX and mapping 
examinations and XRD investigations.
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