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In this work, CuO/CeO2 nancomposite was prepared via hydrothermal 
route. The product was prepared under 12 h and 150 oC. The shape, size, 
and crystalline structure have been investigated through using various 
techniques such as the scanning electron microscopy (SEM),  with energy 
dispersive X-ray (EDX),  the X-ray diffraction analysis (XRD), the Fourier 
transform infrared spectroscopy (FTIR), and thermogravimetric analysis 
(TGA). The magnetic properties of prepared nanocomposites were studied 
via vibrating-sample magnetometer (VSM). Consequently, acid violet 
and rhodamine B dyes were applied for investigation the photocatalytic 
activity of prepared CuO/CeO2 nanocomposite. Results showed that Acid 
violet and rhodamine B were photo-decolorization under UV irradiation 
after 120 minutes with 95.8 % and 88.2% respectively. This excellent 
performance was due to the suitable band structure of synthesized CuO/
CeO2 nanocomposites which led to depress the recombination of photo-
generated electrons and holes with increased the acidity of CeO2 after 
incorporation it with CuO in the crystal lattice. This work introduces new 
nanocomposites for decolorization of organic pollutants from wastewater. 

INTRODUCTION
The development of numerous unique 

functional and smart materials is dependent 
on the development of a particular class of 
nanomaterials [1-3]. Because of their unique 
physical and chemical properties, the transition 
metal oxide (TMO)-based nanomaterials have 
been attracting a lot of attention [4-6]. Till now, 
these nanostructures have been applied for a 
variety of industrial applications. High specific 
surface area, higher surface energy and quantum 
confinement are responsible for the attractive 
physical and chemical properties in TMO 

nanomaterials [7-9]. Since these features are vast 
pauper on the size and shape of nanoparticles, 
it is essential to apply a suitable method for 
preparation TMO nanostructures with desired 
shape and morphology [10-12]. So, various metal 
oxide nanostructures with different properties 
have been prepared and applied in various fields 
[13-16].

Because of its intriguing features as a 
p-type semiconductor with a narrow band gap 
and as the basis of various high-temperature 
superconductors, cupric oxide (CuO) has been 
found more attention in TMO research [17-
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19]. CuO nanomaterials with high surface-to-
volume ratio, and potential size effects have 
excellent chemical and physical features that 
are vastly different from those of their micro 
or bulk counterparts [20, 21]. The promising 
applications of these nanostructures have been 
thoroughly explored. CuO nanomaterials have 
attractive structural properties that make them 
an ideal platform for the composite construction 
with various components to improve its different 
photocatalytic and bio-related application. So, 
the binary design of CuO nanomaterials mixed 
with inorganic nanostructures is the most 
popular choice used for preparation of effective 
nanocomposites [22, 23].  Cerium dioxide, CeO2 
has received a lot of interest in recent years due 
to its widespread availability and high potential of 
catalyst-based application. CeO2 has a large oxygen 
storage capacity, abundant oxygen vacancies, and 
the ability to flip between Ce3+ and Ce4+ with ease 
[24-26].

Jianyu Yun et al. prepared CuO/CeO2 
nanocomposites using the non-equilibrium 
plasma, and then comparing with the traditional 
calcination. Results revealed that the treatment 
of non-equilibrium plasma after calcination 

can considerably improve the synergism effect 
between the CuO active phase and the CeO2 
support, which leading to good dispersion of CuO. 
They applied CuO/CeO2 nanocomposites as an 
effective catalyst for toluene oxidation [27]. 

Weiwei Jie et al. prepared the 1D cerium 
oxide nanotubes, nanowires, and nanorods via 
hydrothermal route and supported CuO for CO 
preferential oxidation. They characterized the 
products via XRD and TEM analysis. It is found that 
CuO/CeO2 nanotubes had the highest CO oxidation 
activity [28].

In this work, the CuO/CeO2 nanocomposite was 
synthesized via simple and novel hydrothermal 
route. The prepared sample was characterized to 
prove synthesis it via using different techniques 
such as XRD, SEM, EDX, FTIR, and TGA. The results 
showed that prepared CuO/CeO2 nanocomposites 
can be applied in different applications.

MATERIALS AND METHODS
Chemicals and instruments 

All chemicals were of synthesis grade, obtained 
from Scharlau, and used without extra purification. 
Nanoscale composites were characterized by 
Philips-X’ pertpro  X-ray diffraction analysis that 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The XRD pattern of a) pure CuO, b) pure CeO2, and c) CuO/CeO2 NCs.
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employing Ni-filtered Cu Kα radiation. Also, the FT-
IR spectra was carried out  for solid sample using 
KBr pellets, Nicolet Magna 550 FT-IR spectrometer. 
The morphological engineering and particle size for 
prepared sample were detected using  LEO-1455VP 
Field-Emission scanning electron microscopy with 
an energy dispersive X ray spectroscopy.

Preparation of CuO nanoparticles (CuO NPs)
0.5 g CuSO4.2H2O was added to 50 mL DI 

water under stirrer conditions. After, as-prepared 
sodium hydroxide solution (10 M) were added. 
The obtained mixture was moved to a Teflon-lined 
stainless steel autoclave and heated at 150 °C for 
10 h. The final product was filtered, washed with 
ethanol, and dried at 65 °C.   

Preparation of CeO2 nanoparticles (CeO2 NPs)
Firstly, 0.6 g Ce(SO4)2.4H2O in 50 mL DI water 

were completely dissolved at 50 °C. Next, sodium 
hydroxide solution (10 M) were added into above 
solution. After that, the mixture was put into a 
Teflon-lined stainless steel autoclave and heated at 
150 °C for 12 h. the resultant powder was filtered, 
washed with ethanol, and dried at 65 °C.    

  
Preparation of CuO/CeO2 nanocomposites (CuO/
CeO2 NCs)

The nanoscale CuO/CeO2 composites was 

prepared as following: Initially, CuSO4.2H2O and 
Ce(SO4)2.4H2O were dissolved completely in DI 
water (25 mL)  at room temperature. Under 
continuous stirring, the as-prepared sodium 
hydroxide solution (10 M) was added drop by 
drop to above solution. After that, the mixture 
was stirred at 25 °C for 10 min. Then, the mixture 
was transferred to a Teflon-lined stainless steel 
autoclave and kept under hydrothermal conditions 
(150 °C, 12 h). After the completion of the reaction 
time, the dark solid was brought to ambient 
temperature, filtered, washed with ethanol, and 
dried at 65 °C. The product was finally calcined at 
600 °C for 2 h. 

RESULT AND DISCUSSION
The identification of composition structure 

was confirmed by XRD technique. Fig. 1a shows 
the XRD graph of the pure CuO NPs. The position 
and intensity ratio of these peaks have acceptable 
to reference pattern (JCPDS= 01-089-2529)
[29]. Besides, CuO NPs Miller’s index is seen. 
According to the Debye-Scherrer equation (D= kλ/
βcosθ)[30-32], the crystallite size was calculated 
approximately 48 nm. Today, many papers have 
been published about XRD patterns of the CeO2 
NPs. The obtained XRD patterns of CeO2 NPs 
(JCPDS= 00-034-0394) in this study is totally in 
agreement with previous report [33]. The number 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 2.  FT-IR spectrum of CuO/CeO2 NCs.
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of clear diffraction and peaks of CeO2 NPs are 
observed in Fig. 1b. The CeO2 crystallite size, which 
is measured by the Debye equation, was reported 
38 nm. Almost all Miller peaks of pure CuO and 
CeO2 NPs are displayed in final XRD patterns and 
the 2θ of CeO2 elevate when CuO incorporated 
with the crystal lattice of CeO2 by metal-metal 
bond that same results which reported in reports 

[34,35] (Fig. 1c).  Accordingly, the CuO/CeO2 
NCs have been successfully fabricated as nano-
composite with the crystallite size about 56 nm. 

The surface functional group was studied by FT-
IR test. Fig. 2 shows the FT-IR spectrum of CuO/
CeO2 NCs synthesized by hydrothermal route. 
As showed peaks in 3430 cm-1 and 1655 cm-1 are 
related to hydroxyl group stretching and bending 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. EDX analysis of CuO/CeO2 NCs.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. FE-SEM images of CuO/CeO2 NCs.



567J Nanostruct 12(3): 563-570, Summer 2022

B. H. Taresh et al. / Cuo/CeO2 Nanocomposites: Synthesis and Photocatalytic Activity 

absorption of water, respectively, which similar the 
position of water OH in metal oxides[36,37]. Also, 
the peaks at 650 cm-1 and 590 cm-1 correspond to 
Ce-O and Cu-O, respectively that attitude to the 
reduced mass for Cu-O is less than value for Ce-O, 
and the wave number is more for Ce-O.

The purity of CuO/CeO2 NCs was confirmed 
by EDX analysis in Fig. 3. In this analysis, cerium, 

copper, and oxygen are the main elements. This 
test could be concluded that the CuO/CeO2 NCs are 
formed without any impurity, and the summation 
of atoms equal to 100%. 

The morphological property of CuO/CeO2 NCs 
was found by using FE-SEM spectroscopy ( Fig. 4). 
Based on FE-SEM images, it can be understood 
that CuO and CeO2 nanoparticles have been gone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. VSM analysis of CuO/CeO2 NCs.

Fig. 6. TGA curve of CuO/CeO2 NCs.
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together as a semi-spherical plate.
Also, the magnetization attributes of CuO/

CeO2 NCs was determined with the help of 
a VSM analysis (Fig. 5). Data display that the 
magnetization amount was reported about 0.08 
emu/g.

Based on Fig. 6, the thermogravimetric analysis 
was applied to find the thermal stability of the 
CuO/CeO2 NCs. This nanocomposite reveals a 
suitable thermal stability without a significant 
decline in CuO/CeO2 NCs weight. The weight loss 
about (2%) at temperatures below 180 ˚C is owing 
to the removal of physically adsorbed solvent and 
surface hydroxyl groups. Rising temperature up to 
800 ̊ C is related to decompose of nanocomposites 
structure. 

The photocatalytic activity of prepared CuO/
CeO2 nanocomposites was studied toward acid 
violet 7 and rhodamine B under UV irradiation 
using % Efficiency=[(1-Cdye,t)/ =[(1-Cdye,0)] x 100 
when Cdye,o is the initial concentration of dye at t 
zero (dark reaction), and at t time  of reaction Cdye,t 
is a concentration of the same studied dye [37-40] 
at wavelengths 517 nm and 510 nm  for acid violet 
7 and rhodamine B, respectively.

The Fig. 7 shows % of photo-degradation 
efficiency of acid violet 7 and rhodamine B 
after 120 min. As well as shown, the 95.8 % and 
88.2% of acid violet 7 and rhodamine B was 
photodecolorization after 120 min irradiation. 
This excellent function can be attributed to the 
synergism between CuO and CeO2 nanostructures. 

 

  
 

  
Fig. 7: Photocatalytic activity of CuO/CeO2 nanocomposites against a)

Acid violet 7 b) Rhodamine B.
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The possible mechanism can be provided for 
photodegradation of any dyes [41-44] such as 
(acid violet 7 and rhodamine B) in presence of 
photocatalyst:

𝐶𝐶𝐶𝐶𝐶𝐶/Ce𝑂𝑂2
hʋ
→ 𝐶𝐶𝐶𝐶𝐶𝐶/Ce𝑂𝑂2  (eCB

− + hVB
+ )                                                                             (1) 

 O2 + 𝑒𝑒𝐶𝐶𝐶𝐶
−  →   • O2

−                                                                                                              (2) 

• O2
− + H+ → • HO2                                                                                                             (3) 

2 • HO2 → O2 + H2O2                                                                                                         (4) 

H2O2 +  eCB
− → 2 • OH                                                                                                         (5) 

hVB
+ + H2O →  • OH + 2H+                                                                                 

Acid violet 7 (Rhodamine B) +• OH → Degradation of Acide violet 7 (Rhodamine B)         

 

𝐶𝐶𝐶𝐶𝐶𝐶/Ce𝑂𝑂2
hʋ
→ 𝐶𝐶𝐶𝐶𝐶𝐶/Ce𝑂𝑂2  (eCB

− + hVB
+ )                                                                             (1) 

 O2 + 𝑒𝑒𝐶𝐶𝐶𝐶
−  →   • O2

−                                                                                                              (2) 

• O2
− + H+ → • HO2                                                                                                             (3) 

2 • HO2 → O2 + H2O2                                                                                                         (4) 

H2O2 +  eCB
− → 2 • OH                                                                                                         (5) 

hVB
+ + H2O →  • OH + 2H+                                                                                 

Acid violet 7 (Rhodamine B) +• OH → Degradation of Acide violet 7 (Rhodamine B)         

 CONCLUSION
In conclusion, the CuO/CeO2 nanocomposite 

was synthesized via in-situ hydrothermal route. 
The prepared products were characterized via 
XRD, SEM, FTIR, VSM, VSM and TGA analysis. 
The characterization techniques confirmed the 
formation of the CuO/CeO2 nanocomposites 
with any impurity. Morphological investigation 
revealed semi-spherical plate morphology of 
CuO and CeO2 in linking together. The prepared 
semiconductor nanocomposites were applied for 
photodegradation of acid violet and rhodamine 
B under ultraviolet irradiation. The results 
showed the excellent photocatalytic performance 
of prepared CuO/CeO2 nanocomposites that 
beyond to improve the surface properties for 
CuO and CeO2 such as increased the acidity of 
surface, depressed the recombination after 
formed their nanocomposite. It was found that 
95.8 and 88.2% of acid violet 7 and rhodamine 
B was removed through treatment via CuO/
CeO2 nanocomposites. The provided mechanism 
showed that the free hydroxyl radicals are the 
responsible for photocatalytic activity of CuO/
CeO2 nanocomposites.
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