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Copper Sulfide (CuS) has received significant interest due to its attractive 
physical and chemical properties. In this study, the development and 
characterization of nano CuS (a p-type semiconductor with a bandgap of 
1.2~2 eV) for the detection of ascorbic acid (Vitamin C) is reported. Nano 
CuS was synthesized hydrothermally by studying the effects of cationic and 
anionic surfactants (CTAB and SDS). The as-synthesized nanostructures 
were characterized for surface morphology, chemical composition, and 
crystal structure. The developed CuS nanoparticles were then drop-cast 
on a graphite electrode and subjected to the electrochemical detection of 
ascorbic acid. Further, the deposition time of the analyte and the deposition 
potential of the electrode was evaluated.  It was observed that the time 
required for ascorbic acid to deposit on the electrode was 20 seconds and 
deposition potential was found to be 0.34V. Besides, the effect of analyte 
concentration on the sensing ability of the nanomaterial was studied and 
a linear relationship between the two was observed. The working pH was 
found to be 9.4. 

INTRODUCTION
Researchers are exploring numerous techniques 

to synthesize materials on a nanoscale owing to 
their great advantage of enhanced properties such 
as lightweight, increased strength, photocatalytic 
ability, and enhanced chemical catalytic activity 
[1]. These nanomaterials are suitable for diverse 
applications such as solar cells, nano-fabrics, 
sensors, cosmetics, and for the domains such as 
medical, nano-biotechnology, bio-engineering, 
defense, security etc., [1]. Research on the 
synthesis of metal chalcogenides such as CuS 
and their multi-faceted applications due to 
unique structural and optical properties, are 
gaining momentum. In recent years the quantum 
confinement effect attributed to their small 

crystallite size is explored [2].
Among the different chalcogenides, the copper-

based chalcogenides such as nanoparticles (NPs) 
of Cu–S/Se, Cu–In–S/Se, and Cu–Zn–Sn–S/
Se are opted for photovoltaic, optoelectronic, 
electrochemical, and photocatalytic applications 
[3]. CuS NPs, also known as Copper monosulfide 
NPs are incredibly attractive due to abundant 
availability of the constituent elements, non-
toxicity, low cost, and applications in various 
fields [3,4]. CuS is a p-type semiconductor with 
phase dependent band gap varying from 1.1 to 
2.0 eV [5,6]. The semiconducting nature of CuS 
backed by an outstanding electrochemical activity, 
rich valency, good chemical stability, metal-like 
conductivity, and ease of synthesis in various 



629J Nanostruct 11(3): 628-637, Summer 2021

 M. Sudeep et al. / Electrochemical Detection of Ascorbic Acid

shapes at nanoscale makes it a potential candidate 
for electrochemical sensing applications [7,8].

Among several analytical methods of detecting 
biomolecules such as fluorescence, spectrometry, 
chemiluminescence, electrochemistry, etc., 
electrochemical detection is considered a simple, 
sensitive, fast, and cost-efficient method [9]. 
Among the electrochemical methods, voltammetry 
is known for the detection of ascorbic acid due 
to its ability to detect a specific component 
even at very low concentrations, fast analysis, 
inherent simplicity, and ease of application. Also, 
there is no need for sophisticated instruments 
and trained personnel for voltammetry [10]. 
Electrochemical biosensors find their use in a 
variety of fields including medical, biological, food, 
and environment due to their advantages such as 
enhanced sensitivity, portability, low cost, online 
detection, rapid response, and reusability [11]. 

CuS generally exists in the hexagonal crystalline 
phase having a P63/MMC space group and a 
primitive hexagonal unit cell with a = 3.8020 Å and 

c = 16.430 Å. CuS is active both spectroscopically at 
620 nm in the UV-Vis region and electrochemically 
between - 0.4 V to -0.7 V at different scan rates in 
an alkaline solution [12]. Its properties depend on 
the morphologies such as nanowires, nanoplates, 
nanotubes, nanorods, nanoflakes, hollow spheres, 
and complex hierarchal structures [13]. There are 
numerous methods available for the synthesis of 
nano CuS such as solvothermal [14], microwave 
[15], ultrasonic irradiation [16], and thermolysis 
of single-source precursors in high boiling point 
solvents that act as surface passivating agents 
[17,18]. Among these, the hydrothermal method 
prompts rapid reaction due to the interaction 
at high pressure. It offers advantages, such as 
low-temperature operation, reproducibility, 
homogeneity, and product purity [19].

In this study, the hydrothermal synthesis of CuS 
nanoparticles and the impact of surfactants on 
the size and morphology are reported. Further, 
the as-synthesized nanoparticles were tested 
for electrochemical detection of ascorbic acid by 
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employing cyclic voltammetry.

MATERIALS AND METHODS
All the chemicals utilized were of analytical 

grade, purchased from Merck India Ltd., and were 
used as received without further purification. 
Cupric Sulphate (CuSO4.2H2O), Sodium Sulfide 
(Na2S.xH2O), Sodium Dodecyl Sulfate (C12H24NaO4S), 
N,N,N,N-Cetyl Trimethyl Ammonium Bromide 
(C19H42BrN), and Acetone were used. 

CuSO4 and Na2S were weighed in the mole 
ratio 1:2 and dissolved in 30mL of deionized 
water. 0.1g of SDS was added to the reactant 
solution under vigorous stirring to ensure that 
the reactants were well dispersed and the 
obtained solution transferred into a Teflon-lined 
autoclave. The above procedure was repeated by 
replacing the SDS with CTAB to study the impact 
of the surfactant. The autoclave was sealed and 
maintained at 120°C for 18 h. Later it was allowed 
to cool to room temperature, naturally. The as-
obtained precipitate was centrifuged, washed 
sequentially with deionized water and acetone, 
and finally dried at 60°C for 2h in a hot air oven.

The sensing of ascorbic acid by the as-
synthesized nanoparticles was carried out in 
an electrochemical sensing setup consisting of 
working, reference, and inert electrodes. The 
working electrode was fabricated by drop-casting 
the CuS solution on a graphite electrode. The 
working electrode was dipped in the electrolyte 

made of 2.5 mmol ascorbic acid solution (1 
ml), phosphate buffer of pH 9 (8 ml), and 0.1M 
KCl solution (2 ml). Cyclic voltammetry was 
used to check the ability of nano CuS to detect 
ascorbic acid and to determine the voltage at 
which oxidation of ascorbic acid occurs. Fig. 1 is 
a schematic representation of the experimental 
setup. The oxidation of the ascorbic acid takes 
place at the working electrode and reduction 
takes place at the counter electrode. The potential 
developed due to this redox reaction is measured 
against the reference Ag/AgCl electrode. The 
effect of the concentration of ascorbic acid on the 
sensitivity of nano CuS was studied by varying the 
concentration of ascorbic acid and recording the 
respective peak values of current. The response of 
nano CuS to various concentrations was measured 
by adding 1 ml of 2.5 mmol ascorbic acid to the 
electrolyte solution, every 10 seconds. Optimum 
pH was determined by using buffer solutions of 
pH ranging from 3 to 9. These buffer solutions 
were prepared using 0.1 M HCl, 0.1 M Disodium 
Hydrogen Phosphate, and 0.1 M NaOH. The 
analyte was prepared by adding 8 ml of buffer 
solution to 2 ml of 0.1 M KCl and 5 ml of 2.5 mmol 
ascorbic acid. The optimum pH and concentration 
were determined at which the deposition time 
and deposition potential were measured.

All the synthesized samples were characterized 
on a Panalytical Powder Diffractometer with Cu Kα 
radiation (λ=1.5418 Å). The morphologies, sizes, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Fig. 2. PXRD of CuS nanoparticles synthesized using different surfactants 
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and purity of the final product were determined 
by scanning electron microscope (Tescan-VEGA3 
LMU) and EDS analysis.

RESULTS AND DISCUSSION
The hydrothermal reaction between CuSO4 and 

Na2S resulted in a black precipitate. The obtained 
product was subjected to powder diffraction and 
all the peaks in Fig. 2 were indexed to digenite CuS 
(JCPDS Card No. 06-0464) with a = 3.792 Å and 
c = 16.34 Å. From the pattern, it is evident that 
the product is pure due to the absence of peaks 
corresponding to the precursors, copper oxide, 
or other phases of copper sulfide. The sharp and 
pronounced diffraction peaks suggest that the as-
synthesized products are crystalline in nature [20]. 

EDAX spectra further confirmed the presence of 
Cu and S peaks alone and quantitative analysis 
revealed that Cu and S are in a stoichiometric ratio 
of 1:2.

Fig. 3(A) depicts the SEM images of nano 
CuS structures synthesized using SDS as the 
surfactant and deionized water as the solvent. 
It can be seen that much-elongated rice millet-
like nano architectures with aggregation are 
present. Further, these images show the uniform 
nanoparticle clusters with particle sizes ranging 
from 49-64 nm. The aggregation can be attributed 
to the surfactant SDS which aids in the self-
assembly of nanoparticles. The end-to-end 
growth of nanoparticles resulted in the formation 
of clusters of nano CuS architectures. However, 
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Fig. 3. SEM images of CuS nanoparticles with SDS as surfactant. SEM image at a magnification of (A) 2μm (B) 500nm (C) 500 
nm with dimensions (D) EDS of CuS nanoparticles
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the exact shape of the nanoparticles could not be 
determined due to excess agglomeration [21]. The 
XRD pattern of the as-obtained CuS nanoparticles 
shown in Fig. 2 (A) can be indexed as a dijenite 
phase (JCPDS Card No. 2-1292).

Fig. 3(B) shows the SEM images of nano 
CuS structures synthesized with CTAB as the 
surfactant and deionized water as the solvent. 
The nanoparticles are found to be uniform with 
particle sizes ranging from 17 – 40 nm. However, 
the aggregation is not much pronounced as in the 
case of SDS. CTAB, being a cationic surfactant, caps 
CuS and inhibits the lateral growth of CuS clusters 
helping to reduce agglomeration of nanoparticles. 
Aggregation of nanoparticles is strongly due to Van 
der Waals forces of attraction and π-π interaction. 
Hence, obtaining a stable dispersion is a challenge 
[22]. The fine and mostly monodispersed particles 
reveal that the growth of nanoparticles was 
restricted by CTAB [23]. CTAB thus facilitates 
the homogeneous formation of stable nano CuS 
structures with well-defined morphology [24]. The 
XRD pattern of the as-prepared CuS nanoparticles 
is shown in Fig. 2 (B). All the peaks of the CuS 
nanoparticles can be indexed as dijenite phase 

(JCPDS Card No. 23-960) with lattice constants of a 
= 11.11 Å and c = 16.36 Å. 

A noteworthy change is the reduction in the size 
of the nanoparticles when CTAB was employed as 
the surfactant. The aforementioned differences 
are correlated to the structure, size, and type 
of the surfactant. CTAB, due to its long chain, 
methyl branches, and cationic nature, prevents 
aggregation by restricting nanoparticles from 
being in close vicinity to each other. While the 
small size and the anionic nature of SDS cause the 
cupric ions to come closer to each other making 
the particles appear larger [21]. 

Electrochemical behavior of ascorbic acid 
indicates that it can either be in oxidized form 
(L-dehydroascorbic acid) or reduced form 
(L-ascorbic acid) obeying the equilibrium as 
follows [22]:
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Fig. 4 shows the cyclic voltammogram obtained 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Plot of current vs. voltage of working electrode (WE) (cyclic voltammogram of Ascorbic Acid 
(AA))
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at a scan rate of 10 mVs-1. The peak occurring at 0.2 
V [23,24] confirms the detection of ascorbic acid 
by the CuS nanostructures. This peak represents 
the oxidation of ascorbic acid as indicated by 
the forward reaction of equation (1). Also, the 
absence of a reduction peak, as evident from 
the figure, further confirms the irreversibility of 
electrochemical oxidation of ascorbic acid [25,26]. 

Effect of concentration of ascorbic acid on the 
peak current

The ability of the nano CuS to detect ascorbic 
acid is correlated to the current registered by the 
working electrode. Variation in current is due to 
the variation in the concentration of ascorbic acid. 
In an experiment, the current flowing through 
the working electrode dipped in the analyte was 
monitored. The concentration of the ascorbic acid 
was varied by adding 1 ml of 50 ppm ascorbic 
acid to the stock solution as described in Section 
2.1. A series of oxidation peaks for different 
concentrations of the analyte are shown in Fig. 
5. A strong response is obtained at the analyte 
concentration of 5 ml ascorbic acid. Further, the 
relationship between the electrode current and 
concentration of the targeted species was obtained 

and the resultant graph is shown in Fig. 6. A plot 
of average currents against the concentration of 
ascorbic acid indicates linearity as depicted in Fig. 
7 [27]. 

A direct correlation between current (I) and 
concentration (C) is seen, allowing for the CuS 
nanoparticles to act as biosensors without any 
signal modification as indicated by equation 
(2). The statistical analysis and the fitted curve 
shown in Fig. S1, is enclosed in the supporting 
information.

𝐼𝐼 = 0.00548𝐶𝐶 + 0.0056 

The concentration of ascorbic acid can be 
determined by equation (1) of the trend line in Fig. 
S1 relating the peak current I and concentration 
C of ascorbic acid. The error induced in the 
calculation of slope and intercept is of the order 
of 10-3 which is as shown in Table 1 and Table 2 
presents the analysis of variation (ANOVA), which 
are presented in the supporting information.

Effect of pH of buffer solution on the 
electrochemical detection of ascorbic acid 

One of the key parameters that influence the 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. A series of oxidation peaks for different concentrations of Ascorbic Acid at the working electrode
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Fig. 6. Plot of Peak Current vs. Time for 1 ml of 50 ppm added at every 10 seconds interval

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Calibration plot 
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Fig. 8. Plot of Peak Current vs. pH of buffer solution

Fig. 9. Plot of Peak Current vs Deposition Time
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response of the electrode in the electrochemical 
detection of ascorbic acid is the pH of the buffer 
solution [28]. The pH of the buffer solution or 
the supporting electrolyte was varied from 3 to 9 
to study its effect on the oxidation peak current 
of ascorbic acid. Fig. 8 shows the oxidation peak 
currents registered at different pH. The onset of 
current is observed at a pH of 7 and the peak is 
observed at a pH of 9 in the considered range of 
pH. Thus, the pH of the electrolyte solution was 
chosen to be 9 for all the further studies [29].

The effect of deposition time on the peak current 
was examined in the time range of 0-150 seconds 
at the optimized pH of 9 and a concentration of 
5 ml of ascorbic acid solution. The peak current 
was observed at 20 seconds as shown in Fig. 9. 
Hence 20 seconds was taken as the deposition 
time for measuring the deposition potential. 
The electrochemical sensing ability of the nano 
CuS is affected by another important factor, the 
deposition potential [30]. The potential was varied 
from 0 V to 0.6 V and the corresponding response 
of the working electrode in terms of current 
was recorded as indicated in Fig. 10. The highest 
current was measured at 0.3V. This indicates that 
ascorbic acid observes maximum deposition onto 
the nanocomposite electrode at this voltage and is 
designated as deposition potential.

CONCLUSION
In summary, CuS nanoparticles were 

synthesized hydrothermally by studying the 
effects of surfactants on size and morphology. CuS 
nanoparticles were synthesized at a hydrothermal 
temperature of 120°C and a duration of 18 
hours. The use of SDS as a surfactant resulted in 
the agglomeration of nanoparticles giving large 
clusters of size range 49 – 64nm. However, a particle 
size of 17 – 40 nm was obtained when CTAB was 
used as the surfactant. The nanoparticles obtained 
were elongated in shape. The as-synthesized 
nanoparticles were used for electrochemical 
detection of ascorbic acid by drop-casting on 
a graphite electrode. Cyclic voltammogram 
recorded the ascorbic acid oxidation peak at 0.2V 
confirming the ability of the nanoparticles to 
detect Vitamin C (ascorbic acid). The sensitivity of 
the nano CuS towards ascorbic acid was studied 
and a direct correlation was obtained indicating 
the use of nano CuS as a biosensor without the 
need for signal amplification.  The concentration 
of ascorbic acid and pH of the buffer solution 
necessary for the optimum electrochemical 
response were found to be 5ml and 9 respectively. 
At this optimum concentration and pH, the 
deposition time and deposition potential were 
found to be 20 seconds and 0.3V respectively.

 

 

 

 

Fig. 10. Response of Peak Current for various Deposition Potentials
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