
J Nanostruct 12(2): 366-374, Spring 2022

 RESEARCH PAPER

Design and Fabrication of TiO2 NP/ NM Nanocomposite as 
Photoanode for Solar Cells
Rawaa Abbas Abd Ali, Ibrahim Shakir Mutashar, and Majid R. Al-bahrani * 

Laboratory of Nanomaterial and Plasma, College of Science, University of  Thi-Qar, Thi Qar, Iraq

* Corresponding Author Email: majidphy2016@utq.edu.iqmajidphy2016@utq.edu.iq

ARTICLE  INFO 

Article History:
Received 10 January 2021
Accepted 26 March 2022
Published 01 April 2022

Keywords:
DSSC
Graphene
Hydrothermal
MWCNTs
WS2QD/TiO2-NC 
nanocomposite

ABSTRACT

How to cite this article
Abd Ali R A., Mutashar I S., Al-bahrani M R. Design and Fabrication of TiO2 NP/ NM Nanocomposite as Photoanode for 
Solar Cells. J Nanostruct, 2022; 12(2):366-374. DOI: 10.22052/JNS.2022.02.013

                           This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

This study presents the preparation of a nanocomposite compound from 
multi-walled carbon tubes with graphene in a ratio (1:1) and adding it to 
(TiO2) and then preparing the resulting compound as photoanode for the 
DSSC cell after treating it with (WS2QD) by hydrothermal method and 
comparing it with the DSSC cell. Based on (TiO2) as photoanode, the crystal 
structure of the basic materials and the prepared nanocompositeWS2QD/
TiO2-NC have been studied using X-ray diffraction XRD, as well as the 
SEM and TEM examination. The physical and chemical properties have 
proved that the nanocomposite (WS2QD/TiO2-NC) has been produced 
within a nanoscale. The regular and pure WS2QD particles are successfully 
installed on the nanocomposite TiO2-NC and exhibit a high surface area 
and pore size (10µm) when compared to pure WS2QD. The nanocomposite 
WS2QD/TiO2-NC compound exhibits a PCE conversion efficiency 
(9.45%), which is relatively high if compared to Pure TiO2 (8.147%). The 
reason for improving the PCE of (WS2QD/TiO2-NC) is that the presence 
of MWCNTs and Graphen in the compound reduces the time to reconnect 
the electron-hole pair and efficiently stabilizes the WS2QD assembly to 
expose the entire active edges. On the other hand,  giving an increase in 
electrical conductivity facilitates electron transfer inside the compound.  
Also, the presence of TiO2 improves the ability of the compound to absorb 
the photon and thus increases the photoelectric stimulation.                                                                                                                         

INTRODUCTION         
The dye-sensitized solar cell technology got 

piqued the concern of scientists and the public 
because of its broad range of usage, easiness to 
manufacture, and high efficiency and longevity. 
Its system has a sandwich structure that is 
composed of a semiconductor nanolayer (TiO2), 
a dye sensitizer (non-organic, organic, and 
natural compounds, the commonly used one in 
the N719 dye is dependent on ruthenium), an 
electrolyte (iodide/triiodide carrier), as well as a 
catalyst (basically platinum) coated by conducting 

substrates (FTO coated glass sheets) [1,2]. It 
absorbs and is stimulated by sunlight theory. 
Such electron has been selected through the 
semiconductor layer because of the preferred 
energies of its “lower unoccupied molecular 
orbital” (LUMO). Such electron is transferred into 
the outer layer by the conducting substratum 
layer. According to the preferred LUMO energy 
level, the oxidized (electron-deficient) dye takes 
an electron from the electrolyte and completes its 
electrons. The regeneration process begins with 
the acceptance of an electron from the outer one, 
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reducing the oxidized electrolyte [3,4]. The method 
of oxidation and regeneration stays reparative 
till the appearance of light [5,6]. To increase the 
output of photocurrent and improve the DSSCs 
efficiency, the light absorption performance of 
the photoanode, a vital element of DSSCs, has 
to be improved ultimately. It is estimated that a 
photoanode with 80 percent absorption of sunlight 
from 350 to 900 nm will be needed to achieve the 
power conversion efficiency of more than 15% 
having I–/I3 – as a redox pair. Polypyridyl ruthenium 
dyes have a bandgap of 1.8 eV, such as N3 and 
N719[7,8]. These are currently the most effective 
traditional sensitizers. As a result, numerous 
experiments were conducted to improve the 
photoanodes light-harvesting efficiency without 
compromising overall performance. Due to their 
cost-effectiveness, highly stable performance, 
and excellent electrochemical performance, 
two-dimensional transition metal chalcogenides 
(TMDs), which include WS2, WSe2, MoS2 [9-11], 
MoSe2 [12], and ReS2 [13], were widely employed 
as a anode material and in different fields [14,15]. 
The 2D TMD exhibits uniquely presented electrical 
and optical properties that are evolved from the 
quantum confinement and surface effects that are 
arising through the process of transiting an indirect 
bandgap to a direct one while scaling down the 
bulk materials into monolayers. TMDs have a 
tunable bandgap, heavy photoluminescence (PL), 
and a high exciton binding energy, getting them 
a good choice for several optoelectronic devices 
such as solar cells, photo-detectors, light-emitting 
diodes, and photo-transistors [16-18].                                                                                                    

Because of their tunable bandgap structure, WS2 
with a layered structure has got a great interest as 
a typical material in the set of transitional metals 
chalcogenides (TMDCs) [19,20]. As the layers are 
reduced into a single layer, the bandgap is changed 
into direct. The photoluminescence (PL) strength 
of monolayer WS2 could be enhanced through 4 
orders when compared to multilayer WS2 because 
of the effects of the quantum confinement in 
monolayer increasing the likelihood of electrons 
transitions [21-23], attracting growing attention 
lie the PL material within the visible and near-
infrared ranges [24-26]. Recent studies have 
shown that WS2 QDs with very-small sizes (less 
than 10 nm) have uniquely gathered physical and 
chemical properties that distinguish them from 
multilayer and monolayer structures, lie strong 
PL emission, high PL quantum yields (QY),[27,28] 

high electroactive sites, huge spin-orbit coupling 
(420 meV) [29] effect, as well as ultra-small scale. 
As a result, WS2 QDs have proved that they 
are excellent for high-efficiency optoelectronic 
and electrochemical applications. Researchers 
have recently concentrated on developing low-
cost, high-efficiency DSSCs cells, as well as the 
fabrication of effective optical electrodes and 
antipodes with high surface stability, reduction 
catalytic activity, and carbon stability. The 
fabricated dye-sensitized solar cells system having 
WS2/graphene photoanode had an opened circuit 
voltages (Jsc) of 0.79 mV, a short circuit current 
(Voc) of 18.6 mA cm-2, a fill factor of 0.66, and a 
power conversion efficiency of 9.6%, according 
to A. Prakasam and Krishnamoorthy [30]. M. 
Durairasan et al. have developed a framework for 
fabricating tungsten selenide/carbon nanotube 
(WSe2/CNT) hybrid photoanodes as potential DSSC 
anodes. As compared to a pure WSe2 (86.2 cm2/g 
and 19.8 nm), WSe2/CNT hybrid nanostructure 
has a high surface layer (107.8 cm2/g) and pore 
size (45.3 nm). The WSe2/CNT composite has 
a higher photo-conversion efficiency of 8.85%, 
electrocatalytic activities, and an electron 
lifetime of 87 nanoseconds [31]. Wu et al. used a 
hydrothermal method to make a tungsten sulfide/
MWCNT hybrid with a presence of glucose to be 
used as counter electrodes in WS2/MWCNT DSSCs. 
(Jsc =12.65 mA cm-2, (Voc  = 0.73 V), (FF= 0.59), 
and ( percent= 5.45) [32]. MWCNT decorated with 
WS2 has been synthesized using a hydrothermal 
process in another study. The material obtained 
has been used as CE materials to the DSSC, and 
it has demonstrated the highly catalytic activities 
to the reducing processes as well as lower charge 
transferring resistance. A DSSC depending on such 
counter electrodes has a registered PCE of 6.41 %, 
which could be compared with the effectiveness 
of a Pt-based DSSC (6.56 %) [33]. In this paper, a 
tungsten sulfide / Multi-walled carbon nanotube 
nanocomposite in the presence of graphene and 
TiO2 (WS2QD / TiO2-MWCNTs-G) in the presence of 
glucose has been prepared by the hydrothermal 
method. The use of nanocomposite as 
photoanode film material for DSSC, which shows 
the comparative photoelectric performance of 
DSSC based on the photoanode TiO2 film.                                 

                                                                                        
MATERIALS AND METHODS
Materials

MWCNTs (95 percent purity), multi-walled 
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carbon nanotubes with diameters of 8-20 nm 
and lengths of 5-10 m density: VCN materials ( 
Iran ) and graphene with diameters of 20-30 nm 
yielded 2.1 g/cm3. N719 (Di-tetrabutylammonium 
cis-bis (isothiocyanate) bis (2,2′-bipyridyl-4,4′-
dicarboxylate) ruthenium has been purchased from 
Sigma Aldrich (N719 = Di-tetrabutylammonium cis-
bis(isothiocyanate) bis (2,2′-bipyridyl-4,4′-dicar (II) 
97 percent purity,chemical formula:C58H86N8O8S(2)
Ru) A fluorine-doped conducting tin oxide SnO2/F, 
thickness (2.2 mm), surface resistivity ~7 Ω/cm-2), 
77% in the visible range)(FTO)  has been obtained 
from Pilkington TEC Glass. To prepare the ( CE 
) Platinum Wire(diameter: 100 µm ) has been 
used. To prepare the reference DSSCs, commercial 
TiO2(Titanium dioxide nanomaterials Density 4.23 
g/m3 at 25C˚ ), and ethanol (C2H5OH) (99.9%) 
have been used for all experiments and high-
purity water. The FTO glass and beakers have been 
cleaned with ethanol as well as deionized water in 
an ultrasonication bath for 15 min for each. 

Synthesis of WS2 QD/ TiO2-NC nanocomposite 
Initially, to synthesis, a compound  TiO2-NC  

mixed with (1:1 ) Graphen and  MWCNTs (NC) with 
( 4 ml) of ethanol and after 10 min of ultrasound 
stirring, adding (1 g ) from TiO2 to the solution. The 
solution’s PH has been then modified by adding a 
few drops of acetic acid and stirring for two hours. 
After we obtained a homogeneous compound 
solution of nanocomposite TiO2/ NC. by the used 
hydrothermal method we added( 1g )of tungsten 
sulfide quantum dot (WS2 QD) with 50 ml of 
deionized water to TiO2 / NC nanocomposite. The 
as-prepared precursor solution has been put to an 
autoclave after an hour of ultrasonic stirring and 
then heated at 160 Co for 72 hours. Being cooled 
down to room temperature, the suspension has 
been filtered and cleaned by ethanol several times 
before being dried at 50 °C.                

                                                                                                           
Fabrication Solar cell device

The three main parts of the DSSC cell sandwich 
are grouped together. These parts are : Cathode 
electrode CE prepared in advance by the method 
of Pt (TEV) on FTO glass plate [34] and photoanode 
electrode from the nanocomposite  WS2 QD / 
TiO2-NC after sintering it on sheets of FTO glass 
with the doctor blade method, allowing it to 
dry, and then treating its fixation at 450 °C. The 
temperature has been raised gradually until it 
reached 450 Co, and then the sample is immersed 

after it had been cooled in N719 dye for 24 hours 
at room temperature,(3) The electrolytic solution( 
I- / I3-) was placed between the two electrodes. 
A Keithley digital controller is used to track the 
DSSC’s current image (J-V) studies (model 2400). 
The photoelectric output was achieved by the 
use of a Xenon 500 W optical filter as a solar light 
source. The electrode material has 1 cm2 active 
surface.         

                                                           
Characterization and Measurement 

An emission scanning and transmission of 
electron microscopes  (SEM, and TEM) have been 
employed to test the samples’ morphologies. 
Analyzing the structural properties is an 
important and essential method for crystalline 
structure research. X-ray diffraction is commonly 
used to investigate the structural properties of 
nanocomposite  WS2 QD/TiO2-NC. The above-
mentioned solar cell’s output can be measured 
using the cell efficiency (PCE) and fill factor (FF) 
equations:                       

         𝐹𝐹𝐹𝐹 =   𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  𝑥𝑥  𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑂𝑂𝑂𝑂  𝑥𝑥  𝐽𝐽𝑆𝑆𝑆𝑆

                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         𝑃𝑃𝑃𝑃𝑃𝑃 (ŋ ) =  𝑉𝑉𝑜𝑜𝑜𝑜   𝑥𝑥  𝐽𝐽𝑆𝑆𝑆𝑆  𝑋𝑋 𝐹𝐹𝐹𝐹
𝑃𝑃𝑃𝑃𝑃𝑃  𝑥𝑥 100%                                       

                                                  (1)

         𝐹𝐹𝐹𝐹 =   𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  𝑥𝑥  𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑂𝑂𝑂𝑂  𝑥𝑥  𝐽𝐽𝑆𝑆𝑆𝑆

                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         𝑃𝑃𝑃𝑃𝑃𝑃 (ŋ ) =  𝑉𝑉𝑜𝑜𝑜𝑜   𝑥𝑥  𝐽𝐽𝑆𝑆𝑆𝑆  𝑋𝑋 𝐹𝐹𝐹𝐹
𝑃𝑃𝑃𝑃𝑃𝑃  𝑥𝑥 100%                                                                                                                            (2)

RESULTS AND DISCUSSION  
Morphology and Composition: Figure 1a  shows 

an SEM image of the formation of thin films of 
TiO2 nanoparticles deposited on FTO and the 
entire surface appears homogeneously covered 
with TiO2 and nanoparticles of an average size of 
(10µm). The X-ray diffraction (XRD) patterns are 
illustrated below (Fig. 1d ) for the TiO2 film, which 
is deposited on the FTO as optical pole peaks with 
values of 2theta (degree)     ( 24.4o   - 101), ( 37.9o 
- 004 ),( 48.2o -200 ), ( 53.8o -105 ), ( 55.1o - 211 
), ( 62.9o -204 ) where large peaks indicate high 
crystallinity of TiO2 particles deposited on FTO. This 
indicates that the TiO2 optical electrode contains 
a porous structure with a large surface area that 
enhances the harvest. Light and absorption of 
N719 dye electrons.                                                                                                                     

The J-V curve of the TiO2 as shown in Fig. 1c was 
obtained under a simulated 100 mW /cm2 AM1.5 G 
solar simulation several solar cell parameters can 
be deduced as Jsc , Voc and FF see table (1). In the 
present paper also, the sol-gel methodology was 
used for preparing (TiO2/MWCNTs) nanocomposite 
powder having (0.02 wt %) MWCNTs to be used as 
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a photoanode in dye-sensitized solar cells (DSSCs). 
Using a doctor-blade process, they have been 
allocated onto transparent-conducting (FTO) glass 
substrates and after that stabled with dyes N719. 
The findings show the ratio of MWCNTs to TiO2 
and the inter-connection of them had a substantial 

impact on the properties of their structure, optics, 
and photo-volt. In addition, the assembled DSSCs 
with counter electrode Pt (TEV) were examined 
under one sun irradiation (100 mW/cm-2). The 
incident conversion efficiency of photon-to-
current (PCE) and calculated current-voltage (IV) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) SEM image of pure TiO2(b) structures nanoscale of TiO2 (c) Photocurrent density voltage 
characteristics of TiO2 (d) XRD of pure TiO2 nanoparticles. 

PE CE Jsc(mA/cm2) Voc(V) FF% PCE% 

TiO2 Pt TEV 17.94 0.664 0.684 8.147 

TiO2/MWCNTs Pt TEV 18.48 0.665 0.705 8.660 

TiO2/NC Pt TEV 18.79 0.677 0.705 8.960 

WS2QD/TiO2-NC Pt TEV 19.35 0.677 0.722 9.450 

 

Table 1. Photovoltaic parameters of  TiO2 pure and nanocomposites samples  TiO2 / MWCNTs, TiO2/ NC, and  WS2 QD / TiO2-NC as 
photoanode in DSSCs.   
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curve of nanocomposite TiO2/ MWCNTs are shown 
in Fig. (4- a) (8.127 % ).                                                                                                           

When using the hydrothermal method to 
combine Graphene and MWCNTs at a ratio of 1 
percent Graphene/1 percent MWCNTs with TiO2, 
the obtained results showed a slight synergistic 
effect in the NC bi-filler hybrid composites, 
resulting in higher electrical conductivity and 
surface area for nanocomposite TiO2/NC. 
This improvement was due to the interaction 
between NC and TiO2, which limited the graphene 
aggregation and enabled MWCNTs to bridge 
adjacent graphene platelets, resulting in higher 
values of (Jsc = 18.79 mA/cm-2) and (Voc = 0,677 
V) comparative than when nanocomposite TiO2/
MWCNTs were present alone, bringing the PCE for 
the cell to 8.960 %.                                                                                                           

Table 1 can explain the fact that MWCNTs 
can act as an electron bridge in the photoanode 
of nanocomposite TiO2 / MWCNTs, transferring 
electrons to the current collector and reducing 
recombination in the device. The inclusion 
of materials (NC) in the photoanode of 
nanocomposite TiO2/NC also increases the dye 
absorption capacity and increases the light harvest 
ultimately the increase in PCE to 8.960 %. The PCE 

of the photoanode of nanocomposite TiO2/NC 
increased when WS2 QD was introduced to TiO2/
NC due to the increase in the absorption surface 
area and the increase in light harvest because 
WS2 QD was in a coating around the compound 
NC.  Consequently, the PCE of the cell with the 
photoanode nanocomposite  WS2 QD/TiO2-NC was 
increased to 9.450%.                                                                         

Before beginning the fabrication process, 
morphological studies of the material were carried 
out, and the results are shown in Fig. 2. The 
MWCNTs used in the experiment are shown in Fig. 
2b. The MWCNTs had an average diameter of 20 
nm. Figure 2d shows an SEM picture of prepared 
RGO, which appears to be a sheet and was 
hydrothermally broken into small spherical sheets 
in an alkaline atmosphere, while the WS2 QD 
sample showed aggregated spherical morphology 
(Fig. 2f).           

XRD analysis has been adopted for characterizing 
the microstructure of pure MWCNTs, RGO, and WS2 
QD samples, and the resulting diffraction pattern. 
( Fig. 2 a,b and c). The XRD pattern of MWCNTs 
(Fig. 2a) indicates a sharply shaped peak at 26.170 
that corresponds with (002) reflections, indicating 
the existence of elemental carbons (JCPDS No. 41-

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 2. (a,c,e) XRD of pure MWCNTs, RGO, and WS2QD nanoparticles respectively (b,d,f) SEM images of pure MWCNTs, 
RGO, and WS2QD nanoparticles respectively also.
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1487), and the XRD patterns of RGO are shown 
in Fig. 2 c. A sharp peak at 2 theta = 10.31o is 
due to (001) graphene oxide in the spectrum. 
After the thermal reduction phase, the sample 
peak shifts to the right side at 2thati = 21o [35]. 
Furthermore, the RGO interlayer gap decreased 
as the peak shifted toward a greater angle. As a 
consequence, Bragg’s law (2d sinθ = nλ) applies. 
Fig. 1(e) demonstrates the hexagonal crystalline 
nature of WS2 QDs, having the characterized peaks 
at 2thati =14.3° for the (002) plane [36]. The peaks 
with lower intensities of the (002) plane show 
the process of forming an ultrathin structure of 
WS2 QD in comparison with (004) planes of WS2 
at 2 theta =27.0°.  In addition to the hexagonal 
plane, the existence of the (006) plane in the 
XRD patterning indicates the availability of WS2 
rhombohedra structures, as previously reported 
[37]. Furthermore, the (102) and (106) planes in 
the XRD patterning have WS2 contents signatures.                                                                                                                         

Morphology and compositions of the 
nanocomposite WS2 QD/ TiO2- NC               

The SEM image and XRD of the nanocomposite 

WS2 QD/ TiO2- NC is illustrated in Fig. 3. The SEM 
image in (Fig. 3b) illustrates the hydrothermal 
synthesis of WS2 QD results in irregular aggregated 
particles with a coral-like shape, which can provide 
a broad specific surface area of absorption. The 
coral-like structure of the WS2 QD particles can still 
be seen in the NC hybrid, and they are distributed 
uniformly. The surface of the nanocomposite WS2 
QD/TiO2-NC becomes rougher when compared 
to pristine MWCNTs and graphene (Fig. 2 b,d,f) 
and TiO2 in (Fig. 1a), indicating that the WS2 QD 
particles are successfully decorated onto the 
surfaces of the MWCNTs and graphene, similar to 
how wrinkled graphene sheets were coated onto 
the surfaces of MWCNTs in NC hybrid.                                                                

Fig. 4a shows the diffraction peaks at the highest 
values which can be assigned as the contribution 
from the WS2 QD, and the strongest peak. 4(a) 
shows the XRD patterns of the nanocomposite 
WS2 QD/TiO2-NC. This demonstrates a lack of 
crystalline. The XRD pattern of the WS2 QD/ TiO2- 
NC shows all of the MWCNTs, WS2QD, and TiO2 
characteristic diffraction peaks. This shows that 
after the hydrothermal phase, WS2QD particles 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a) Photocurrent density voltage characteristics of nanocomposites TiO2/MWCNTs, TiO2/NC and WS2 QD/TiO2 
-NC (b) the described DSSCs can be evaluated in terms of, Fill factor (FF), Jsc, Voc, and cell efficiency (PCE)  (c) TEM 

images of nanocomposite WS2QD/TiO2-NC.
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are incorporated into TiO2-NC. TEM analysis 
was performed to examine the microstructure 
of WS2 QD/ TiO2- NC in greater detail, as shown 
in Fig. 3 c. The WS2 QD nanocrystals have been 
bound to the surface of the NC hybrid, which 
is noteworthy. These TEM findings show that 

WS2QD nanoparticles are successfully decorated 
on the NC hybrid surface. The WS2 QD/TiO2-NC 
nanocomposite prepared in this study is highly 
active catalytically to the absorbing photon 
processes and a lower resistances for charge 
transferring. A DSSC based on this photoanode 
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Fig. 4. (a) XRD of nanocomposite WS2 QD/TiO2-NC  (b) SEM image of WS2 QD/TiO2-NC 

Fig. 5. Devices performance of the DSSCs as a function of Jsc,  Voc,  Fill Factor FF and Efficiency PCE.
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has a registered PCE of 9.45 % “under simulated 
solar illumination of 100 mW cm2”, which could be 
compared with a photoanode TiO2 DSSC (8.147 % 
) see Fig. 5. The outstanding performance is due 
to the fact that the nanocomposite WS2 QD/TiO2-
NC structure has huge specific surface areas which 
can be employed in the interfering reactions and 
has a lot of potentials for improving photovoltaic 
performance in DSSCs.                           

The reason for improving the PCE of (WS2QD/
TiO2-NC) is that the presence of MWCNTs and 
Graphen in the compound reduces the time to 
reconnect the electron-hole pair and efficiently 
stabilizes the WS2QD assembly to expose the entire 
active edges while giving an increase in electrical 
conductivity that facilitates electron transfer inside 
the compound.  In addition, the presence of TiO2 
improves the ability of the compound to absorb 
the photon and thus increase the photoelectric 
stimulation, as well as the nanocomposite crystal 
structure of WS2QD /TiO2-NC which allows 
effective ionic diffusion and helps in infiltration for 
(I- / I-3) easily.       

                       
CONCLUSIONS 

In short, a simple and safe method for 
manufacturing a photoanode column using 
the hydrothermal method using multiple 
nanomaterials. XRD analysis confirmed the 
successful synthesis of pure and homogeneous 
nanocomposite WS2QD / TiO2-NC hybrid 
nanoparticles and retention of the crystal 
structure. The SEM images revealed a porous 
morphological structure. We believe that the 
great improvement in conversion efficiency PCE 
to( 9.45%) of nanocomposite (WS2QD / TiO2-NC) 
results from the good properties of the materials 
used in terms of high electrical conductivity, large 
and effective surface area.    
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