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Green energy is often derived from renewable energy technologies such 
as solar, wind, geothermal, biomass, and hydroelectric power as a source 
of energy. Every one of those technologies generates energy differently, 
whether it’s by harnessing the sun’s energy through solar panels, wind 
turbines, or the flow of water. In recent years, nanomaterials have been 
used in solar cells due to their high efficiency. Our study reported a new 
method (photolysis) to fabricate silicon dioxide (SiO2) nanoparticles. 
Various techniques investigated the synthesized sample. A transmitted 
electron microscope (TEM) was used to determine the particle size of 
nano-SiO2 and was found to be 20.7 nm. The amorphous structure of SiO2 
nanoparticles synthesized was diagnoses via x-ray diffraction (XRD). The 
energy band gap is estimated to be 3.61 eV in Uv-visible spectroscopy to 
evaluate the nano-sample’s optical properties. Eventually, SiO2 nanoparticles 
were applied as a photoanode to assembled dye-sensitized solar cells 
(DSSC). Photo-current short-circuits, photovoltaic open-circuit, and 
DSSC power conversion output was evaluated using an I – V measurement 
system. The effects of the concentration of Rhodamine 6G dye-sensitized 
on DSSC power conversion performance have also been studied. The cell 
power conversion efficiency with increased dye concentrations was mainly 
increased, with maximum efficiency of 2% at 20 mm of dye concentration. 
Finally, it can be reported that silicon oxide nanoparticles can be used as 
anode electrodes in dye-sensitized solar cells, as they are highly effective.

INTRODUCTION 
Nanomaterials are quickly spread across all 

essential science and technology sectors, including 
electronics, aerospace, defence, medicine, and 
dentistry [1-4]. It means the design, synthesis, 
characterization, and use of nanometer-scale 
materials and tools [4,5]. Physical, chemical, and 
biological properties in nanoscales differ from 
individual bulk atoms and molecules [6-8]. This 

allows creating new groups of advanced materials 
and compounds that fulfil high technology 
applications requirements [9-12]. Because of 
its broad applications in electronic equipment, 
insulators catalyzes or pharmaceuticals; The 
scientific community has given silica nanoparticles 
intense study [14]. Nanoparticles from SiO2 
Amorphous are used to produce electronic 
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substrates, film substrates, insulators for electrical 
purposes, insulators, and humidity sensors [15-
17]. For each of these products, silica particles 
play a different function. Some products rely 
on their quality on silica particles’ amount and 
scale [18]. Small-scale silica particles with a high 
purity like high-tech are essential. Industries 
such as biotechnology and photonics are highly 
demanding of this sort of material. The optical 
properties of silica nanoparticles can be observed 
for surface defects consistent with large surface/
volume ratios[19,20]. 

Different techniques such as processing 
microemulsion, chemical vapour deposition (CVD), 
hydrothermal techniques, combustion synthesis, 
plasma-synthesis, sol-gel techniques, etc., have 
been applied to the synthesis of SiO2 nanoparticles 
[21-24]. Regardless of the synthesis process, the 
main emphasis was on particle size, morphology 
regulation, and particle surface [25]. Our method 
(photolysis method) is considered new in the 
synthesis of SiO2 nanoparticles, whereby we can 
control the particle size without any aggregation 
[26,27]. In a solar cell application, Improved 
photon absorption and load carriers’ production 
are the essential requirements in the form of 
DSSC. Therefore, because of their fundamental 
properties that can improve solar cells’ converting 
power, Nanomaterials are used in photovoltaic ( 
PV ) technology. They are found promising for 
visible spectral area light harvesting because of 
the improved electron mobility resulting from the 
generation of fast charging carrier [28-30]. Due 
to their unique physical and chemical properties, 
SiO2 nanoparticles have been used in solar cell 
applications. This material also has excellent 
electrical and optical properties [31].

Consequently, sensors, piezoelectric devices, 
fuel cells, anti-reflection coating, catalysts 
were used [32-34]. A dye-sensitized solar cell 
(DSSC) is a part of the 3rd solar cell generation. 
DSSC does not require high pure content and 
relatively low manufacturing costs [35]. It involves 
four main components impacting cell activity: 
photoanode, a counter electrode, Dye-sensitized, 
and electrolytes [36]. In this paper, silicon dioxide 
nanoparticles were synthesized by a new method 
(photolysis method) and usage as a photo-anode 
to Fabrication Dye-sensitized solar cell (DSSC).

MATERIALS AND METHODS 
All materials were purchased and used 

as received from Sigma-Aldrich. Throughout 
the preparation and purification steps. 
Tetraethylorthosilicate (purity 98%), acetic acid 
(purity 99.8%), absolute ethanol (EtOH purity 
99.9%), Rhodamine 6G dye, and urea (purity 
99.9%) have been used in this work.

Synthesis of silicon dioxide (SiO2 ) Nanoparticles 
UV irradiation was used as a source to synthesis 

SiO2 NPs by mixing 20 ml of Tetraethylorthosilicate 
with 60 ml of acetic acid\ water (1:5). The mixture 
was stirred for 5 minutes; then, 20 ml, 0.2 M of 
urea was added slowly to the above solution. 
The UV source is a mercury lamp (λ = 365 nm) 
operating at 125 W. The irradiation lamp was 
immersed inside the chemical reaction, as shown 
in Fig. 1. An ice bath cooled the system to control 
the temperature. After 30 minutes, a gel of white 
colour was formed, the gel was separated and 
washed several times by absolute ethanol, then 
dried at 100 oC and calcinated in an oven at 600 
oC for 3 hours.  A white powder of silicon dioxide 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Synthesis of silicon dioxide nanoparticles using the 
UV-irradiation method.
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nanoparticles was obtained.

Fabrication of silicon dioxide-based on dye-
sensitized solar cell

SiO2 nanoparticles were coated onto the 
indium-doped tin oxide (ITO) glass, resistance 
8 ohm, and transmission 83%. ITO glass (2 x 2 x 
1 mm) was washed with ethanol and de-ionized 
water several times with an ultrasonic bath for 
impurity clearance and dry using an air blower. SiO2 
nanoparticles were coating accordingly; a colloidal 
solution of SiO2 nanoparticles had prepared by 
mixing 500 mg of the nano-powder with 20 ml 
of ethanol. The photoanode was done utilizing a 
dripper to cover the ITO-glass’s conductive face 
with a colloidal solution, then annealed at 250°C 
for 60 minutes in the air. 

The annealed film had immersed overnight at 
room temperature in the different concentrations 
(5, 10, 15, 20 mM) of  Rhodamine 6G dye 
(C28H31ClN2O3) using de-ionized water as a solvent 
[37]. Graphene -silver nanocomposite was 
prepared by hummer’s modified method [38].  
Then, coated on the conductive side of ITO glass by 
immersed it overnight in a colloidal solution of 200 
mg graphene -silver nanocomposite with 20 ml of 
ethanol and used as a counter electrode.  The dye-
absorbed SiO2 nanoparticles coated ITO glass was 
clipped with a Graphene -silver nanocomposite 

(G-Ag) coated ITO glass (counter electrode)  to 
make a sandwich-type DSSC design. Finally, the 
liquid electrolyte (I- /I-3) solution was immersed 
in the system through the electrode counter gap. 
The Fabrication of silicon dioxide-based on the 
dye-sensitized solar cell is shown in Fig. 2.

Characterization 
X-ray diffraction of SiO2 nanoparticles was 

examined using (XRD-6000) which was operated 
at 30 mA and 40 kV to generate radiation at a 
wavelength of 1.5406 Å. JEOL JEM-2100 TEM 
measurement was used to study nanoparticles’ 
size and morphology. A drop of suspended 
nanoparticles was placed on the carbon-coated 
TEM grid for analysis. Shimadzu UV-Vis 160 V 
spectrometer measured the absorbance of SiO2 
nanoparticles. 

RESULT AND DISCUSSION
Structure of SiO2 nanoparticles

As a part of this investigation, the diffraction 
angle 2θ of XRD analysis spanning the 5−80 degree 
range were carried out to test the obtained SiO2 
nanoparticles, as shown in Fig. 3. The powder 
diffraction pattern indicates a typical broad peak at 
2θ = 22°, which reveals the amorphous existence 
of silica [39]. The XRD pattern also shows that no 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Graphical structure of SiO2 nanoparticles based DSSC
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ordered crystalline structure is present.
The small size and incomplete internal structure 

of synthesized powders may be responsible for this 
high XRD reflecting point. There is no other high 
impurity reflecting silica nanoparticles’ pureness. 
The XRD results can be used to determine the 
crystal size of SiO2 nanoparticles. In this work, 
the average size (D) of SiO2 nanoparticles was 
calculated using the Debye-Scherrer equation [40-

44]: 

D = Kλ/ βcos                                                              (1)

Where 𝑘 denotes Scherrer constant that equals 
0. 9, λ is the wavelength of the Cu-Kα radiation, β 
corresponds to line broadening in radians (the full 
width at half maximum, FWHM) and θ is the Bragg 
angle derived from the 2θ value corresponding to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. TEM images of SiO2 nanoparticles at two different scales (50 and 100 nm).

Fig. 3. Synthesis of silicon dioxide nanoparticles using the UV-irradiation method.
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the maximum peak-intensity in the XRD pattern. 
The SiO2 nanoparticles diameter obtained using 
Eq. (1) was 11.79 nm. Thus, our experiment’s UV 
source was proved to produce SiO2 nanoparticles.

Transmission electron microscopy (TEM)
In SiO2 nanoparticle characterization, TEM was 

chosen because it produces a higher resolution 
and greater precision in particle size in contrast to 
others, including electron microscopy scanning. Fig. 
4. shows high-scale TEM images on two different 
scales (50 and 100 nm) of SiO2 nanoparticles. 
Subsequent TEM characterization studies have 
verified the actual scale, shape, and morphology 
of nanoparticles. Furthermore, the images show 
that the SiO2 nanoparticles are quasi-spherical 
without aggregation. Based on these experiments, 
the average size of the nanoparticle 20.7 nm was 
achieved after the average XRD measurement of 
nanoparticle size. That has been consistent.

Optical properties of SiO2 nanoparticles
The optical band gap of SiO2 nanoparticles 

was tested using UV-vis spectroscopy in the 
range of 200–800 nm. Dispersed into de-ionized 
water by sonication for 5 min, the synthesized 
SiO2 nanoparticles obtained a uniform solution. 
Fig. 5 (a) reveals a SiO2 nanoparticles UV-visible 
spectrum. The spectrum shows a high absorption 
peak at 317 nm due to SiO2 nanoparticles surface 
Plasmon absorption. The absorption edge of SiO2 
nanoparticles was at 363 nm. 

The optical band gap of SiO2 nanoparticles was 
calculated by Tauc equation [45]: 
              

(αh𝜈𝜈)2 = A(h𝜈𝜈 − 𝐸𝐸𝑔𝑔)                                         (2)

where Eg = energy of the optical bandgap, α = 
absorbance, h = planks constant, ʋ = frequency of 
incident radiation, A = constant called the band 
tailing parameter.

Plotting (αhv)2 versus Eg based on the spectral 
response gives the extrapolated intercept, which 
corresponds to the bandgap energy values, as 
shown in Fig. 5 (b). The optical band gap energy of 
the SiO2 nanoparticles is measured to be 3.61 eV.

photovoltaic properties of DSSC based on SiO2 
nanoparticles

The photovoltaic parameters of the dye-
sensitized solar cell (DSSC) with different dye 
concentrations made by SiO2 nanoparticles are 
shown in Fig. 6. The results of these performances 
are summarized in Table 1. A solar simulator 
includes the DSSC, illuminated by a 100 mW / cm2 
halogen lamp. The power conversion efficiency of 
DSSC was calculated by [40,46,47]:     

                                  
η = Pmax / Pin = Voc.Jsc.FF / Pin  * 100 %                     (3)

where ,  and   Represent the value of open-
circuit photovoltage, the value of photo-current 
of short-circuit density, and incident light power, 
respectively. The fill factor (FF) is defined by [40]:

 
FF= Vmax. Jmax / Voc. Jsc                                                (4)

  
where  and  Represent the voltage and the 

current density at the maximum output power.
The DSSC values are calculated in Table 1. It 

was critical for the SiO2-based DSSC parameters 
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because of the concentration sensitizing dye and 
small particles of synthesized SiO2 nanoparticles. 
The cell power conversion efficiency was 
increased with increased dye concentrations. The 
increased absorption may also explain the dye 
molecules’ high efficiency on the SiO2 surface. 
Therefore, SiO2 nanoparticles are promising to be 
used in potential photovoltaics as the process is 
easy, and the materials can quickly be prepared. 
There was a relatively low current density rating. 
The photo-current is the most critical parameter 
for calculating the overall system efficiency limit. 
The parent materials act differently because of 
their large surface area and surface energy when 
their particle size approaches the nano level. The 
synthesized SiO2 nanoparticles have an average 
particle size of approximately 20.7 nm. We can, 
therefore, expect substantial phytochemicals. A 

relatively small photo-current may be powered by 
different factors, such as small roughness factor, 
ow injection efficiency, photoanode reflection or 
dispersion, and charging performance.

Consequently, additional electron densities 
at higher light intensity were transferred to SiO2. 
Table 1 shows that the values η and Jsc increase 
as the light density applied increases. The increase 
in control generation is due to the rise in light 
intensity. The highest short circuit current and 
high open-circuit voltage were shown on our 
DSSC, with a 20 mM photosensor concentration. 
Due to the SiO2 nanoparticle molecular structure 
(favorable with electron/hole pair separation). The 
DSSC mechanism can be discussed, To enter the 
excited state, light passes through a transparent 
electrode and is absorbed by Rhodamine 6G dye. 
The excited electrons would then be pumped into 
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5 0.51 8.11 0.25 4.09 1.0225 0.247 1.02 % 

10 0.56 8.51 0.29 4.43 1.2847 0.269 1.28 % 

15 0.59 9.02 0.34 5.10 1.734 0.326 1.73 % 

20 0.61 9.40 0.35 5.72 2.002 0.349 2 % 

Fig. 6. J-V curve of SiO2 nanoparticles-based DSSC by different concentrations

Table 1. The parameters of  SiO2 nanoparticles- based DSSC
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the semiconductor SiO2 Nanoparticles conduction 
band and transferred to an external circuit. To 
complete a loop, the oxidized dye would be reduced 
by a redox pair in the electrolyte, which a counter 
electrode would then reduce with external circuit 
electrons. In comparing the SiO2 nanoparticles-
based DSSC with previously reported DSSC [48-52], 
the obtained DSSC in this study can be regarded as 
an active photoanode with a counter electrode to 
fabrication SiO2 nanoparticles-based DSSC Which 
gives high conversion efficiency as a result of the 
preference of silicon oxide in dye solar cells.

CONCLUSIONS
The dye-sensitized solar cell (DSSCs( based on 

SiO2 nanoparticles was provided in this report. 
In particular,  the nano-size   SiO2 powders have 
been synthesized by the photolysis method; This 
method has the advantage of giving us a small size 
of particles without any aggregation. TEM, XRD, 
and UV-visible have characterized the Synthesized 
nano-powders. 20.7 nm is the size of the average 
particles we got from the TEM measurement. 
The energy band gap was 3.61 ev. The effects 
on the DSSC power conversion efficiency have 
also been studied in the concentration of Dye-
sensitized Rhodamine 6G. Cell power conversion 
efficiency was mainly increased at an increased 
dye concentration. The maximum efficiency was 
2.00% at a concentration of 20 mM Rhodamine 6G 
dye under an input light intensity of 100 mW\cm2.
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