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In this study, functionalized multi-walled carbon nanotubes (MWCNT-
COOH) were used as a nanocatalyst for thermal decomposition of 
ammonium perchlorate (AP) as an integral part of composite solid 
propellants (CSPs). Modification of MWCNTs was performed via acid 
treatment with concentrated aqueous solution of nitric acid, i.e. 7 M. FE-
SEM and FT-IR analyses clearly revealed that nitric acid-treated materials 
under reflux conditions suffered the highest degree of modification and 
putting carboxylic acid functional groups on the top or even surface. 
Raman spectra displayed three types of defects in MWCNTs, i.e. D-band: 
sp3-hybridization of carbons, G-band: sp2-hybridization of carbons and 
D’-band: impurity on the surface. A composite was prepared by AP and 
MWCNT-COOH (3% wt.) via solvent-anti-solvent method and catalytic 
effects of these multi-walled carbon nanotubes were studied on the thermal 
decomposition behavior of AP by thermal gravimetric analysis (TGA) and 
differential scanning calorimetry (DSC). Results showed that MWCNT-
COOH lowered high temperature decomposition by 89°C and this reaction 
occurred in one step which was complete decomposition.

INTRODUCTION
Chemical propellants in common are used for 

delivering specific impulse values ranging from 
about 175 up to about 300 s [1, 2]. High values of 
specific impulse are obtained from high exhaust-
gas temperature, and from exhaust gas having 
very low molecular weight. To be efficient, a 
propellant should have a large heat of combustion 
to yield high temperatures, and should produce 
combustion products containing simple, light 
molecules embodying such elements as hydrogen, 
carbon, oxygen, and the lighter metals (aluminum, 
beryllium, lithium) [1-3]. There are two types of 
chemical propellants, solid and liquid chemical 
propellants [1, 2]. Two general types of solid 

propellants are in use [1, 2, 4, 5]. The first, the 
so called double-base propellant, consists of 
nitrocellulose and nitroglycerine, plus additives 
in small quantity. The other one is the composite. 
Separate fuel and oxidized chemicals are used, 
intimately mixed in the solid grain. The oxidizer 
is usually ammonium nitrate (AN), ammonium 
chlorate (AC) or ammonium perchlorate (AP), and 
often comprises as much as four-fifths or more 
of the whole propellant mix. The fuels used are 
hydrocarbons, such as asphaltic-type compounds, 
or plastics [1-5].

Ammonium perchlorate is the most common 
oxidant and high energy ingredient in composite 
solid propellants (CSPs) which occupies a 
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large proportion in the formula [6]. Thermal 
decomposition of this oxidant could directly 
affect combustive behavior (burning velocity 
and energy features) of solid propellant. An 
extensive study on the thermal decomposition 
of AP was carried out by researchers [7-10]. By 
reducing particle size of ammonium perchlorate, 
it could be improved, but this method is restricted 
because superfine AP is very dangerous [7, 8, 11]. 
Recently, many researchers have also investigated 
different catalysts on thermal decomposition of 
ammonium perchlorate to improve its combustive 
behavior [12-14]. Results showed that a small 
amount of catalyst could reduce temperature 
of thermal decomposition, especially higher 
pyrolytic temperature, and increase apparent 
decomposition heat. It could improve burning 
velocity and efficiency of propellant [15].

Multi-walled carbon nanotubes (MWCNTs) 
are nanostructures derived from rolled graphene 
planes [16, 17]. MWCNTs of various morphologies 
could be obtained depending on their preparation 
method [18]. Multi-walled carbon nanotubes could 
be used as ideal building blocks in nanotechnology. 
Extraordinary properties have been attributed 
to MWCNTs, so that a plethora of diverse 
technological applications ranging from wiring 
in integrated circuits and nanoscale components 
to composite materials with improved functional 
characteristics [19-25]. MWCNTs could be used in 
CSPs as catalysts or catalyst supports, where metal 
particles with catalytic activity may decorate along 
the external walls or be filled in the interior of 
MWCNTs [26-28].

MWCNTs are known to be agglomerated 
materials that will bundle together and entangle 
causing many defects in various applications 
[29]. Functionalization of this allotrope of carbon 
is one of several ways utilized to improve the 
compatibility of MWCNT and host materials. Many 
functional groups could be attached to MWCNT 
surface ranged from small molecules, such as 
fluorine [30], amine [31, 32], hydroxyl [32, 33], 
carboxyl [34-36], oxy radicals [37] and sulfonated 
4-chlorophenyl [38, 39], to macromolecules like 
alkyl chains (butyl lithium) [40-45] that could be 
used in different applications, especially in the 
composite solid propellants. Numerous methods 
such as oleum method or acid treatment [34], 
Fischer esterification [36], Grignard synthesis [40], 
Friedel–Crafts reaction [46] and temperature-
controlled fluorination reactor [30] have been 

reported for chemical functionalization of carbon 
nanotubes, either on the tips or sidewall of 
MWCNTs [33]. It increases the ability of dispersion 
for MWCNT and interfacial adhesion between 
carbon nanotubes and nanoparticles [14, 47-51]. 
A supplementary and supporting method for 
heightening combustive behavior of AP is to use 
functionalized MWCNTs [51].

Here, it was tried to modify multi-walled 
carbon nanotubes (MWCNTs) via acid treatment 
and catalytic effects of MWCNTs on AP thermal 
decomposition as an integral part of composite 
solid propellants were investigated using thermal 
gravimetric analysis (TGA) and differential 
scanning calorimetry (DSC). Characterization of 
functionalized MWCNTs was also completely 
described.

MATERIALS AND METHODS
Multi-walled carbon nanotubes (MWCNTs) with 

purity of 90-95% (National Iranian Oil Company, 
Tehran, Iran) were purchased. Average diameter 
and lengths of these nanotubes varied from 10 to 
20 nm and from 5 to 15 μm, respectively. MWCNTs 
were purified before functionalization and making 
a composite with ammonium perchlorate (AP). 
They were calcined at 350°C for 2 h to remove 
amorphous carbon. In order to attach chemical 
functional groups, i.e. carboxylic acid, on the 
tops of nanotubes, 1 g of calcinated MWCNTs 
was dispersed in 100 mL of 7 M HNO3 aqueous 
solution with ultra-sonication for 15 min. Then, 
this suspension was refluxed at 120°C for 10 h 
with stirring. After that, the mixture was rinsed 
with deionized water until that was neutral. 
Finally, the functionalized multi–walled carbon 
nanotubes (MWCNT-COOH) were separated 
and dried at 60°C in an oven. These MWCNT-
COOH were analyzed by field emission-scanning 
electron microscopy (FE-SEM, MIRA3, TESCAN), 
transmission electron microscopy (TEM, Zeiss), 
Fourier transform-infrared spectroscopy (FT-IR, 
Nicolet Magna IR 550), Raman spectroscopy, UV-
Vis spectroscopy (GBC model Cintra 101), X-ray 
diffraction (XRD, Philips-X’PertPro, Cu Kα, λ=1.5406 
nm), thermal gravimetric analysis (TGA, STA 503, 
Bähr) and differential scanning calorimetry (DSC, 
F3 404, Netzsch).

To make a composite with ammonium 
perchlorate (AP), there are several methods, i.e. 
physical and chemical methods. In this work, 
a chemical method called solvent-anti-solvent 
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method was utilized [52]. This method avoids 
MWCNT-COOH from agglomeration. 518 mg of AP 
was first dissolved in 10 mL of distilled water and 
16 mg of functionalized MWCNTs was dispersed 
in 10 mL of methyl isobutyl ketone followed by 
sonication for 10 min at room temperature. Then, 
these two solutions were mixed and heated at 
80°C. It caused to prepare a composite with 3% wt. 
of MWCNT-COOH as nanocatalysts. After heating, 
ammonium perchlorate was homogeneously 
precipitated on MWCNT-COOH. Finally, the 
composite was tested by SEM, TGA and DSC.

RESULTS AND DISCUSSION
In order to improve the combustive behavior 

of ammonium perchlorate (AP) as an important 
oxidizer in composite solid propellants (CSPs), this 
oxidizer was mixed with a nanocatalyst via solvent-
anti-solvent method. In this method, multi-walled 
carbon nanotubes (MWCNTs) functionalized by 
acid treatment, i.e. carboxyl functional groups, 
were utilized which give excellent properties to this 
oxidizer. It should be stated that the concentration 
of MWCNT-COOH in the solid mixture was 3% wt. 
First, functionalized MWCNTs were characterized 
by several analyses such as FT-IR, Raman, XRD, UV-
vis, FE-SEM and TEM. Fig. 1 shows FT-IR spectra 
of pristine and modified multi-walled carbon 
nanotubes. Significant differences were observed 
at 1730.77 cm-1 (νa C=O, carboxylic), 1128.76 

cm-1 (νa C-O), 1621.79 cm-1 (νa C=C) which were 
emerged in FT-IR spectra of MWCNT-COOH. It 
should also be noted that the peak of νa O-H at 
3437.77 cm-1 was intensified which means the 
correct acid treatment and functionalization of 
MWCNTs [32, 34, 35, 53, 54]. There were carboxyl 
functional groups on the top or even surface of 
MWCNTs, which would mean that MWCNTs were 
well dispersed in the solution [22].

Raman spectroscopy is a powerful tool 
for investigation of the extent of disorder in 
functionalized MWCNTs. Fig. 2 represents Raman 
spectra of pristine and modified MWCNTs. The 
peak at 1357.59 cm-1 was attributed to D-band 
which means defects in disorder-induced modes 
or sp3-hybridized carbons. These defects were due 
to finite or nanoscale graphitic planes and other 
forms of carbon, such as rings around defects on 
nanotube walls, vacancies, heptagon–pentagon 
pairs, kinks and heteroatoms [55]. There was 
another peak at 1592.86 cm-1 which was usually 
attributed to G-band or in-plan vibrations of 
graphite wall or sp2-hybridized carbons [55]. 
These peaks were observed in both pristine and 
modified multi-walled carbon nanotubes. Another 
peak at 1626.32 cm-1 was observed for MWCNT-
COOH which was related to D´-band due to 
existence of impurity on the surface. It could be 
easily seen for modified MWCNTs while that was 
not distinguishable for pristine MWCNTs [55].  

1 

 
 Fig. 1. FT-IR spectra of pristine and functionalized multi-walled carbon nanotubes (MWCNT-

COOH).
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It should be stated that D-band to G-band (ID/IG) 
area ratio indicates that functionalization affects 
surface structure of MWCNTs. ID/IG area ratios of 
pristine MWCNTs and acid-treated MWCNTs are 
0.84 and 0.91, respectively, which revealed that 
functionalized MWCNTs were properly synthesized 
in this research [46].

Fig. 3 shows X-ray diffraction patterns 
(XRD) of pristine and functionalized MWCNTs. 

Significant diffraction pattern of pristine MWCNTs 
was appeared at 26.02° [35]. This peak was 
corresponded to (002) reflection plane or also 
known as interlayered spacing between adjacent 
graphite layers. (002) reflection peak was observed 
at the same value in modified MWCNTs diffraction. 
Interestingly, the intensity of diffraction peak at 
(002) in acid treatment of MWCNTs decreased. This 
was an indication of loose carbon nanotube flosses 

 

2 

 
 Fig. 2. Raman spectra of pristine and functionalized multi-walled carbon nanotubes (MWCNT-

COOH).

 

3 

 
 Fig. 3. XRD patterns of pristine and functionalized multi-walled carbon nanotubes (MWCNT-COOH).



239J Nanostruct 12(2): 235-244, Spring 2022

H. Tavakoli/ Thermal decomposition of AP with modified MWCNTs

after treatment which they form less ordered in 
the functionalized ones. Furthermore, there was 
another peak at 43.82° which was related to (101) 
reflection plane. From XRD patterns, it could be 
concluded that functionalized MWCNTs still had 
same cylindrical wall and inter-planar spacing 

after functionalization process. Thus, the structure 
of MWCNTs was protected even after undergoing 
the treatment.

Fig. 4 depicts UV–Vis spectra of pristine and 
functionalized MWCNTs via acid treatment. Both 
spectra had a maximum absorbance around 208.5 

 

4 

 
 Fig. 4. UV-Vis spectra of A: pristine and B: functionalized multi-walled carbon nanotubes (MWCNT-COOH).

 

5 

 
 Fig. 5. A: FE-SEM image of pristine MWCNTs, B: FE-SEM and C: TEM images of functionalized multi-

walled carbon nanotubes (MWCNT-COOH).
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nm which was related to p–p* charge transition of 
C–C aromatic bond of CNT structure [34]. While on 
the contrary, there was another peak at 296 nm 
as C=O bond for modified MWCNTs which meant 
carboxyl and hydroxyl functional groups on the 
surface of CNTs were formed (Fig. 4B). Based on 
literature, the first peak was narrow related to 
pristine MWCNTs which indicated agglomeration 
of carbon nanotubes (Fig. 4A) [34]. Briefly, these 
results proved the presence of functional groups 
on the surface of MWCNTs and led to improve 
the performance of thermal decomposition for 
ammonium perchlorate.

FE-SEM and TEM images of functionalized 
multi-walled carbon nanotubes (MWCNT-COOH) 
are presented in Figs. 5B and C. FE-SEM image of 
MWCNTs was also illustrated in Fig. 5A. Cylindrical 
structures of modified MWCNTs could be clearly 
seen with 20 to 30 nm in diameter and 5 to 
10 μm in length. In order to study the thermal 
decomposition of ammonium perchlorate (AP) in 

the presence of MWCNT-COOH as nanocatalyst, 
a composite was made with them and FE-SEM 
image of this product is displayed in Fig. 6C. 
These materials were homogenously mixed 
with each other which could be analyzed as 
composite. FE-SEM images of initial AP and AP/
MWCNTs composite are shown in Figs. 6A and 6B, 
respectively.

Fig. 7 exhibits TGA and DSC curves of pure AP, 
pristine MWCNTs, functionalized MWCNTs and 
their composites with 3% wt. of catalysts at rate 
of 10°C/min. The endothermic peak at 244.1°C 
for pure ammonium perchlorate was due to 
crystallographic transition from orthorhombic 
to cubic form (Fig. 7A). This transition remained 
unaltered after addition of pristine or functionalized 
MWCNTs (Figs. 7D and 7E). The first low 
temperature exothermic peak (LTD) at 289.6°C was 
observed for AP which was attributed to its partial 
decomposition and producing intermediates (NH3 
and HClO4). Ammonium perchlorate underwent 

 

6 

 
 Fig. 6. FE-SEM images of A: ammonium perchlorate (AP) and its composite with B: pristine and 

C: functionalized multi-walled carbon nanotubes.
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complete decomposition at the second and main 
high temperature exothermic (HTD) at 443.6°C 
which intermediate products were converted 
into volatile products (O2, Cl2, N2O, NO2, HNO3, 
H2O, HCl, ClO and HOCl). After addition of pristine 
MWCNTs or MWCNT-COOH (3% wt.), noticeable 
changes were experienced at high temperature 
decomposition (HTD) of AP. Compared to pure AP, 
HTD shifted from 443.6°C to 389.6°C and 354.6°C 

for pristine MWCNTs and MWCNT-COOH at rate 
of 10°C/min, respectively (Figs. 7A, 7D and 7E). 
This drastic decrease in temperature by 54°C and 
89°C indicated an efficient catalytic effect on the 
thermal decomposition of ammonium perchlorate. 
This decrease was significant in functionalized 
MWCNTs, i.e. from 562.5°C to 354.6°C (207.9°C), 
which was due to the synergistic action of this 
binary composite (AP/3%‏ wt. MWCNT-COOH)  

7 

 
Fig. 7. TGA and DSC curves of A: AP, B: pristine MWCNTs, C: functionalized multi-walled carbon nanotubes (MWCNT-COOH) D: AP/

MWCNTs, and E: AP/MWCNT-COOH composite at rate of 10°C/min.
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causing an enhancement in the catalytic activity 
(Figs. 7C and 7E). Such a marked reduction in HTD 
was also attributed to the presence of a large 
number of active sites, higher surface area and 
smaller particle size of modified MWCNTs [52]. 
Another interesting observation was a high heat 
release (ΔH) of 1308.71 J/g (AP/3% wt. MWCNT-
COOH) compared to 388.86 J/g for pure AP which 
was the highest value achieved so far by using 
MWCNT-COOH as a nanocatalyst.

As it was observed in TGA curves, thermal 
decomposition of pure ammonium perchlorate 
showed a two-step weight loss (Fig. 7A). At low 
temperature (317.0°C), in which weight loss was 
28.4%, it could be related to partial decomposition 
of AP and formation of intermediates, i.e. NH3 and 
HClO4 by dissociation and sublimation, respectively. 
At high temperature (450.6°C), in which weight 
loss was 71.8%, it could be related to complete 
decomposition of intermediate volatile products. 
In the presence of functionalized MWCNTs 
nanocatalyst, TGA curves showed that weight loss 
was a one-step process which meant a complete 
decomposition of ammonium perchlorate (Fig. 
7C). Gaseous species, such as NH3 and HClO4, 
were absorbed on the MWCNT-COOH surface. 
This catalyzed the reaction towards completion 
affecting the high-temperature decomposition 
peak. The reaction scheme proposed for the LTD 
was dominated by the proton transfer mechanism 
with the formation of NH3 and HClO4. The proton 
was trapped by either ClO3

- or by ClO4
- whose 

protonated forms decomposed readily to form 
ClO2, a strong oxidizer. ClO2 oxidized NH3 and NH4

+  
to form the observed decomposition products 
dominated by N2O. The reaction scheme proposed 
for the HTD was initiated by the sublimation of AP 
and subsequent decomposition of the sublimated 
AP on the MWCNT-COOH to form NH3 and HClO4 
which reacted further to form the observed 
products dominated by NO2.

CONCLUSION
Ammonium perchlorate (AP) is an important 

material for preparation of composite solid 
propellants (CSPs) and its performance affects 
combustive behavior of propellants. In this 
research, multi-walled carbon nanotubes 
(MWCNTs) were modified by acid treatment and 
used as nanocatalysts. They were made a composite 
with AP via solvent-anti-solvent method. Several 
analyses such as FT-IR, Raman, XRD and UV-Vis 

spectra confirmed functionalization of MWCNTs. 
FT-IR and UV-Vis spectra revealed carboxylic acid 
functional groups on the top and even surface of 
MWCNT-COOH. Raman spectra showed defects on 
the surface which was due to acid treatment. XRD 
patterns exhibited characteristic peak of MWCNT 
which existed in the modified form. Based on 
FE-SEM and TEM images, diameter and length 
of MWCNT-COOH were 20-30 nm and 5-10 μm, 
respectively. FE-SEM image of composite displayed 
functionalized multi-walled carbon nanotubes 
were homogenously combined with ammonium 
perchlorate. TGA and DSC analyses of pure AP, 
MWCNT-COOH and their composite with 3% wt. 
of MWCNT-COOH disclosed excellent catalytic 
performance on thermal decomposition of AP. 
When modified MWCNTs were added, the peak 
of high-temperature decomposition decreased by 
89°C and heat released (ΔH) during decomposition 
was 1308.7 J/g, compared to 388.86 J/g for pure 
AP. TGA analysis showed one-step thermal 
decomposition of ammonium perchlorate which 
was because of catalytic behavior of functionalized 
MWCNTs (MWCNT-COOH).
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