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Nanostructures have proved to be a very attractive option for sensor 
application due to their physical and chemical properties. In recent years, 
carbon quantum dots as a new member of carbon nanostructures has been 
widely used in the field of sensors. In this work, carbon quantum dots 
was synthesized via green precursors using hydrothermal method. The 
prepared products were characterized via with X-ray diffraction (XRD) 
analysis, Transmission Electron Microscopy (TEM), FT-IR, UV-Vis, 
and Photoluminescence (PL) spectroscopy. The results revealed that the 
prepared carbon quantum dots provide excitation-dependent fluorescence 
emission. The obtained findings from photoluminescence spectroscopy 
revealed that as-prepared carbon quantum dots could be applied as 
a fluorescent probe for detection of ascorbic acid.  The PL of carbon 
quantum dots can be significantly quenched by Cr(VI), which follows 
a dynamic quenching mechanism. As ascorbic acid enters the solution, 
Cr(VI) reduced to Cr(III) which cause the turn back the carbon quantum 
dots fluorescence and a good linearity in range of 0.06–0.18 mM.

INTRODUCTION
Materials science and engineering 

advancements have opened the path for the 
creation of new and more sophisticated sensors 
[1-3]. In sensor applications, nanomaterials have 
been prepared and employed widely [4-7]. So 

far, many nanomaterials have been used for 
application in the field of sensors such as palladium 
nanoparticles (Pd NPs) [8], zinc oxide nanoparticles 
(ZnO NPs) [9], magnetic nanomaterials including 
Fe3O4-based nanomaterials [10], and inorganic 
quantum dots [11, 12]. Inorganic quantum dots 
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(QDs) belong to a modern class of nanostructures 
that have been able to find wide applications in 
the sensor fields. Properties such as electronic 
and optical features of QDs are easily changed by 
controlling their shape and size. Inorganic quantum 
dots show high photostability which makes them 
more competitive with other nanomaterials in the 
field of sensor. The inorganic quantum dots have 
faced with a substantial drawback that limits their 
application, toxicity, most of inorganic quantum 
dots are made from heavy and toxic metal such as 
cadmium, arsenic, and mercury [13-17]. Therefore, 
many efforts have been focused on the finding of 
alternative for inorganic quantum dots

Carbon quantum dots are a new type of carbon-
based nanomaterial. During the separation and 
purification of single-walled carbon nanotubes, 
Xu et al. found luminescent carbon quantum dots 
for the first time in 2004 [18]. When compared to 
typical nanomaterials, carbon quantum dots have 
better features such as high photostability, low 
toxicity, high resistance to photobleaching, high 
surface area, and ease of modification, making 
them intriguing materials for sensor applications 
[19-22]. The main characteristic of carbon 
quantum dots is that the properties of carbon 

quantum dots depend heavily on the method they 
are synthesized. The synthesis strategies for carbon 
quantum dots are divided into two categories: 
“top-down” and “bottom-up.” synthesis methods 
which use electrochemically, chemically, or 
physically breaking down carbonaceous materials 
(such as graphite powder, graphene oxide (GO), 
coal, graphene and so on) are categorized in 
top-down approach. The bottom-up approach 
are used in chemical synthesis to formation 
tiny organic compounds via pyrolysis and some 
chemical processes [23]. One of the most 
significant optical features of carbon quantum 
dots is photoluminescent properties. Currently, 
numerous luminescence processes have been 
reported, the most common of which being the 
quantum size effect, molecular and molecule-like 
states, and surface defect states 

[24-27]. Carbon quantum dots have strong 
fluorescence stability, which means that even 
after a lengthy period of continuous excitation, the 
fluorescence emission intensity can stay steady. 
These unique features make carbon quantum dots 
an attractive option in sensor applications [28, 29]. 

Mohanraj Jagannathan et al. prepared carbon 
quantum dots from corncob by hydrothermal 

 

 

 

 

 

 

 

 

Fig. 1. XRD pattern of prepared carbon quantum dots
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route. The as-prepared carbon quantum dots 
was intensively sensitive towards lead ions, DNA, 
copper ions, paracetamol, ferric ion, and chromium 
ion. The findings of optical sensitivity obtained 
from the linear range of 1‐10 ng/mL, 0.10‐0.30 mg/
mL, 2.5446 ng/mL, 0.0694 mg/mL, 0.3103–1.5515 
μM/mL, 0.4299–4.7293 μM/mL, 1.3010 μM/mL 
and 0.05–2.5 μM/mL. The limit of detection was 
measured 2.5446 ng/mL, 0.0694 mg/mL, 0.8641 
μM/mL, 1.2454 μM/mL, 1.3010 μM/m, 0.8550 μM/
mL and 2.8562 μM/mL, respectively [30].

Nitrogen doped carbon quantum dots was 
applied via Xiaoyan Du et al. to detect curcumin. 
The designed sensor was based on the fluorescence 
resonance energy transfer between curcumin and 
nitrogen doped carbon quantum dots. The findings 
revealed that designed sensor can be applied in 
the range of 0–2600 μM with a detection limit of 
0.13 μM for detection of curcumin [31].

In this work, fluorescent carbon quantum was 
prepared via green hydrothermal method. The 
prepared carbon quantum dots were characterized 
via X-ray diffraction pattern, Fourier-transform 
infrared spectroscopy, transmission electron 
microscopes and photoluminescence spectroscopy. 
After that, the as-prepared carbon quantum dots 
was applied for detection of ascorbic acid in aqueous 
solution based on on-off  switch fluorescent sensor.  

MATERIALS AND METHODS
Apparatus and chemicals

For carbon quantum dots characterization, 
X-ray diffraction (XRD) patterns were recorded 
X-ray diffractometer (Shimadzu XRD-7000) 
equipped with a Cu Ka radiation source, λ = 0.154 
nm. For morphological investigation, transmission 
electron microscope images were provided which 
were obtained on a FEI Tecnai G2 F30 S-TWIN 
transmission electron microscope. The optical 
properties of prepared samples were investigated 
via photoluminescence spectra (PL) that used a 
Cary Eclipse fluorescence spectrophotometer. The 
entire chemicals used for this investigation were of 
analytical grade.

Synthesis of carbon quantum dots
1 g of soy flour was dispersed in 50 ml 

deionized water under vigorous stirring for 3 
hours. After that, the prepared mixture was 
moved to stainless steel autoclave and kept at 
200 ˚C for 10 hours.  The dark brown sample was 
obtained by centrifuging at 10000 rpm for 40 
min to remove any insoluble part. The solution 
was kept at 4 ˚C, and every day was centrifuged 
to remove settling solids for 20 days. The final 
carbon quantum dots was kept at 4 ˚C for further 
characterization and sensor tests. 

 

  

 

 

 

 

 

 

 

Fig. 2. FTIR spectra of prepared carbon quantum dots
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Detection of ascorbic acid via carbon quantum 
dots 

2 ml phosphate-buffered saline (pH =5.5), 1 ml 
carbon quantum dots solution and 1 cc 0.1 mM 
Cr(VI), obtained from dissolving K2Cr2O7 in the 
deionized water,  were mixed and distilled water 
to get a final volume of 4 Ml. The solution was 
stirred for 10 min. After that, different amounts 
ascorbic acid solution was added into the mixture 
of  Cr(VI) and carbon quantum dots and stirred for 
another 10 min. All photoluminescence tests were 
carried out under room temperature.

RESULTS AND DISCUSSION
For examination of the phase structure and 

crystallinity of the obtained carbon quantum 
dots, X-ray diffraction was utilized. For prepared 
carbon quantum dots, the XRD pattern displays 
broad peaks at 2θ = 24° that is related to the 
amorphous nature and disordered carbons in 
carbon quantum dots. The presence of broad peak 
at 2θ = 24° distinguishes the carbon quantum dots 
fom graphene and graphite, since the graphene 
and graphite show sharper peaks in XRD pattern. 
XRD can be used to determine the purity of 
carbon quantum dots generated soy flour. As well 
as seen, there is no further peak in XRD pattern 
which imply on the high purity of prepared carbon 
quantum dots. 

The functional groups linked on the surface 
of carbon quantum dots play crucial role in their 
characteristics. The optical properties and solubility 

of carbon quantum dots depend intensively on the 
surface functional groups. The FTIR analysis was 
applied for characterization functional groups. 
The broad peak at 3000-3400 cm-1 attributed to 
the O-H functional group. The mild peak at 1638 
cm-1 related to the stretching vibration of C=C 
bonds and C=O bond. The weak absorption peaks 
at 1200-1500 may be related to the C-C bonds. 
The peak at 110 cm-1 can be related to C-O bond. It 
can be concluded from FTIR analysis that the vast 
number of O-H and COOH functional groups were 
linked to the surface of prepared carbon quantum 
dots. The high solubility of prepared carbon 
quantum dots can be approved these findings. 

Transmission electron microscope analysis 
was applied for better investigation of shape and 
size of prepared carbon quantum dots. As well as 
shown in Fig. 3, the very small regular spherical 
carbon quantum dots were formed in narrow 
size distribution. The mean diameter of carbon 
quantum dots was measured 14 nm. No stacking 
carbon quantum dots was observed interestingly. 
It can be good news for application of prepared 
carbon quantum dots in detection of ascorbic acid.

The unique optical features of carbon quantum 
dots turn them into functional nanostructures in the 
field of sensors. Therefore, the optical properties 
of prepared carbon dots was investigated via UV-
Vis and PL analysis. Fig. 4a shows UV-Vis analysis 
of prepared carbon quantum dots. As well s 
shown, absorption peaks at 242 and 330 nm are 
related to the п→п* in C=C and n→п* in C=O 

 

 

  

 

 

 

 

 

 

 

Fig. 3. TEM images of prepared carbon quantum dots
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respectively. The band gap of carbon quantum 
dots was calculated via Tauc equation: 

  αhν = A(hν - Eg )
n                                                                (1)

Where α is the optical absorption coefficient, h 
is the Plank constant, ν is the calculated frequency 
from wavelength, A is the absorbance and Eg is the 
value of the optical energy gap. As well as shown, 
the band gap was measured 3.39 eV through 
extrapolation of plotting (αhν)2 against hν curve 
(Fig. 5b). 

As well as mentioned, TEM images proved 
very small (14 nm) size of prepared carbon 

quantum dots. This tiny size alongside surface 
functional groups lead to quantum confinement 
in prepared carbon quantum dots that is expected 
to provide significant photoluminescent features. 
Fig. 5 shows PL spectrum obtained by exciting the 
sample at different excitation (360, 400, and 440 
nm). It is found that the prepared carbon quantum 
dots provide excitation-dependent fluorescence 
emission. The provided findings from PL spectrum 
revealed that as-prepared carbon quantum 
dots could be applied as a fluorescent probe 
for detection of ascorbic acid. Ascorbic acid is a 
common antioxidant found in animal feed, drinks, 
foods, and medicinal formulations. It is required for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. a) UV-Vis absorption spectra and b) calculated band gap for carbon quantum dots

Fig. 5. The photoluminescence spectra of carbon quantum dots obtained by exciting the sample at different excitation 
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the production of antibodies and the absorption 
of iron, and it is involved in many vital human 
life processes. As well as mentioned, the surface 
functional groups in the carbon quantum dots are 
very effective in providing photoluminescence 
properties. Via introduction of Cr(VI) into the pre-
prepared carbon quantum dots solution, the PL 
intensity of carbon quantum dots was decreased 
slightly, that can be related to the interaction of 
surface functional groups (OH and COOH) and 
Cr(VI) ions. This interaction can be done as a 
complex formation. It is obvious that via increasing 
the concentration of Cr(VI) ions the PL intensity is 
decreased relatively. The process is reversed via 
introduction of ascorbic acid. Ascorbic acid can 
reduce Cr(VI) to Cr(III) under mild conditions and 
lead to elimination of Cr(VI)-carbon quantum dots 
interaction. Therefore, the PL intensity of carbon 
quantum dots starts to increase again. As shown in 
Fig. 6a, the PL intensity of carbon quantum dots- 
Cr(VI)-ascorbic acid is enhanced via increasing 
concentration of ascorbic acid. From 0.06 to 0.18 
mM, there is a good linear relationship between 
fluorescence intensity and ascorbic acid dosage 
(Fig. 6b) (y = 0.0568x + 0.0215, R² = 0.9921). It 
can be concluded that designed green carbon 
quantum dots-based sensor can be acted as a 
superior photoluminescence probe for detection 
of ascorbic acid in concentration range of 0.06 to 
0.18 mM.

CONCLUSION
In summary, the carbon quantum dots was 

prepared via soy flour as a green precursor using 
hydrothermal route. The X-ray diffraction pattern 
revealed the amorphous nature of prepared 
carbon quantum dots. FTIR analysis was applied 
for functional group investigation. Findings from 
FTIR analysis confirms presence of O-H and COOH 
functional groups which lead to excellent solubility 
and fluorescent in as-prepared carbon quantum 
dots. TEM analysis approved formation of 14 nm 
spherical carbon quantum dots in regular shape 
and size. The UV-Vis and PL spectrum were applied 
for optical properties of prepared samples. Results 
showed the attractive optical properties of carbon 
quantum dots. These optical properties led to 
designing nanosensor based on the fluorescent 
“off–on–off” probe for detection of ascorbic acid. 
Designed sensor shows good linear relationship 
between fluorescence intensity and ascorbic acid 
concentration in the range of 0.06 to 0.18 mM.
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