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A new nanomaterial based on folic acid functionalized dendritic fibrous 
nano-silica (FA-KCC-1-NH2) was synthesized and used as a recyclable 
solid acid and heterogeneous nanocatalyst towards efficient amidation of a 
variety of carboxylic acids with amines in toluene under reflux conditions. 
KCC-1 porous nanomaterials were produced utilizing a hydrothermal 
technique and next functionalized with folic acid moieties to yield KCC-
1-NH-FA nanocatalyst. The morphology, surface charge and size of 
KCC-1, KCC-1-NH2 and KCC-1-NH-FA nanoparticles were verified by 
field emission scanning electron microscope (FESEM), dynamic light 
scattering (DLS), zeta potential and transmission electron microscopy 
(TEM), respectively. The pore size of KCC-1-NH-FA nanoparticles 
were moreover investigated with Brunauer-Emmett Teller (BET) where 
results revealed that the surface of this nanocomposite was expanded. 
The synthesized KCC-1-NH-FA nanoparticles showed effective catalytic 
activity in amidation of carboxylic acids with amines affording in high 
yields (76-89%) in short period of times. Moreover, other advantages of 
present method are easy workupcondition and recyclability of catalyst 
which gives economic rewards.

INTRODUCTION
The compounds containing amide moiety 

are one of the most significant functional 
structures in organic chemistry and biology [1]. 
The amide bond is extensively present in the 
most of pharmaceutically interesting materials, 
drug candidates and natural products, as well as 
in majority of industrial compounds, including 
detergents, polymers and even lubricants [2, 
3].  Also, this bond constitutes the backbone of 
the proteins, peptides and other biologically-
related molecule structures [4, 5]. Recent surveys 
revealed that 25% of registered drugs have at least 

one amide bond in their structures and therefore 
amidation reactions are the most common 
reactions in the synthesis of pharmaceuticals. Some 
examples of these drugs are shown in Fig. 1 [6]. 
Usually the synthesis of amides can be performed 
by the reaction of amines with carboxylic acids 
[7-9] or other derivatives including carboxylic 
salts [10], esters [11,12] and halides [13]. Various 
methods have been developed for amide bond 
synthesis such as rearrangement of aldoximes 
[14], direct coupling of amides with aryl halides 
[15], transamidation of amides with amines [16], 
hydration of nitriles [17,18], aminocarbonylation 
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of aryl halides [19] and Ugi reaction [20]. New 
efficient synthetic protocols with catalytic 
procedures have been expanded for oxidative 
amidation of alkylarenes [21], alcohols [22] and 
aldehydes [23] with various amine derivatives and 
amine salts that have important advantages from 
green chemistry and atom economy viewpoints 
[24-30]. Recently, using from N-bromosuccinimide 
as an oxidant for the preparation of amides 
from aromatic aldehydes with amines has been 
proposed [23]. Bantreil et al. reported a direct 
synthesis method of benzamides using copper 
salt from benzyl alcohols [31]. Also, Wang et al., 
utilized tetrabutyl-ammonium iodide and FeCl3 as 
a co-catalysis for direct amidation by using free 
amines and methylarenes in water  by tert-butyl 
hydroperoxide as an ecofriendly benign oxidant 
[21, 32-36]. Considering the various methods used 
highly hazardous reagents or contained poor atom 
efficiency, so it was necessary to observed from 
both environmentally friendly and atom economy 
points of view. Acidic materials such as solid acids 
and acidic carbons are cheap and environmentally 
benign for direct amidation without side problems 
[37]. Recently, Polshettiwar et al., synthesized 
fibrous nano-silica (KCC-1), with the high surface 
area (typically >700 m2/g), large pore sizes [38], 
low density, ease of surface modification and 
weak toxicity with well biocompatibility [39]. Also, 
these dendritic porous nanocomposites have been 
successfully used as suitable heterogeneous nano-
silica catalysts for several organic synthesis [40-44] 
and therapeutics [45]. Folic acid (FA) is a well-
known compound (vitamin B9) which generally 

known as a biological molecule. FA is essential 
in cell division, nucleic acid preparation and cells 
metabolic [46].

In our previous works, we reported two 
kinds of KCC-1 based nanocomposites with high 
surface area, good catalyst activity and different 
specifications where KCC-1-NH2-DPA and magnetic 
Fe3O4@KCC-1-npr-NH2 nanocatalysts used as 
efficient and recyclable materials for synthesize 
of tetrahydrodipyrazolopyridine and sulfonamide 
derivatives, respectively [41,42].

In our research, an appropriate procedure for 
the synthesis of folic acid-based catalyst (KCC-
1-NH2- FA) has been described. The catalytic 
activity of KCC-1-NH2-FA as a recyclable solid acid 
and efficient nanocatalyst was further examined 
for the direct amidation of carboxylic acids with 
amines into the desirable amides in toluene under 
reflux condition. 

MATERIALS AND METHODS
All solvents and chemical materials were 

purchased from Sigma Aldrich and Nano Eksir 
Sina (Iran) chemical companies and used without 
further purification. X-ray diffraction (XRD) 
configurations were conducted on a Siemens D 
5000×-Ray diffractometer (Texas, USA) with a Cu 
Kα anode (λ=1.54 A°) operating at 40 kV and 30 
mA. The surface morphology and energy dispersive 
X-ray (EDX) and FESEM analysis were conducted on 
TESCAN system of FEG-SEM MIRA3 TESCAN (Brno, 
Czech Republic). Transmission electron microscopy 
(TEM) images were recorded by a Carl Zeiss LEO 
906 electron microscope operated at 100 kV 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 1. Some drugs contain amide bond
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(Oberkochen, Germany). Brunauer-Emmett-Teller 
(BET) was measured by Micromeritics NOVA 2000 
apparatus at 77 K using nitrogen as the adsorption 
gas (Florida, USA).Particle size distribution values 
and zeta potential were measured by Malvern 
particle size analyzer (Malvern, UK).

Synthesis of KCC-1 
Mesoporous KCC-1 was prepared following to 

the described process by Bayal et al. (2016) [47]. 
Briefly, 5 mL of NaOH (2 M) and 1.0 gr of CTAB 
and 230 mL of deionized water were mixed and 
sonicated for 20 min. After that 0.6 g urea was 
added to the mixture and stirred for 5 h at 30 °C. 
In continue, 3 gr of TEOS was added drop-wise in 
the reaction ambient and then 45 mL cyclohexane 
and 2 mL hexanol were mixed and added to the 
reaction ambient and sonicated for 1 hr. Next, the 
resultant solution was refluxed at 90 °C for 20 hr. 
Afterward, the mixture was cooled and obtained 
white sediment were filtrated and to collect the 
KCC-1 particles. Next the white precipitation 
was washed tree times with deionized water 
and absolute ethanol and was dried at 70 °C in 
the oven. Eventually, the prepared KCC-1 was 
calcinated at 560 °C for 5 h to eliminate the extra 
CTAB in the oven [48]. 

Synthesis of KCC-1-NH2
In order to synthesis of KCC-1 nanoparticles 

functionalized with amine groups, firstly, 260 mg 
of KCC-1 nanocomposite was added to the 10 mL 
of HCl solution and sonicated for 30 min. Then, 6 
mL of ethanol and 790 μL of APTES were added to 
the solution and stirred at room temperature for 6 
h. Next, the obtained suspension was centrifuged 
and washed several times with absolute ethanol. 
Then, washed KCC-1-NH2 white solids were dried 
at room temperature.  

Synthesis of KCC-1-NH2-FA
For the synthesize of FA-NHS by EDC/NHS, 

firstly, 70 mg of folic acid, was mixed to with 15 mL 
of DMSO and 160 μL of TEA and stirred vigorously. 
Then, 13 mg of NHS and 11 mg of EDC were added 
and stirred vigorously at 37 °C for 20 hr. Next, TEA 
was eliminated by vaporization and synthesized 
folic acid-NHS was kept in a refrigerator for next 
stage of synthesis. 

In continue, 190 mg of KCC-1-NH2 nanoparticles 
were mixed with 30 mL of PBS (pH 7.0, 55 mM) 
and next 15 mL of the synthesized FA-NHS solution 

was mixed with the solution. Next, the mixture of 
KCC-1-NH2 and prepared folic acid-NHS was stirred 
at room temperature for 6 hr. After that, KCC-1-
NH-FA white-yellow precipitate was filtered and 
washed several times with deionized water and 
dried at 60 °C. 

General process for the direct amidation of 
carboxylic acids with amines 

In order to the synthesis of desired compounds  
1 mmol carboxylic acid  and 1 mmol amine was 
mixed in toluene and then  20 mg of synthetic KCC-
1-NH-FA was added to the solution as a catalyst. 
The resulting solution was refluxed for a specified 
period of time (Table 1). 

After 3 h which the reaction of amine and acid 
was completed (monitored by TLC), the solution 
was mixed with about 30 ml of ethyl acetate and 
KCC-1-NH-FA nanoparticles were separated by 
filtration. Then, the solvent was evaporated under 
vacuum and resultant precipitate was purified 
by preparative layer chromatography on silica 
gel using EtOAc/n-hexane (1: 4 V/V) to give 4a-
p. Finally, separated catalyst was washed several 
times with absolute acetone and deionized water 
and reused for next reaction without the significant 
losses of its performance (Fig. 2).

RESULTS AND DISCUSSION
Characterization of the KCC-1-NH2-FA nanocatalyst 

The process of functionalization of the KCC-1 
with NH2 and FA moieties was monitored by FT-IR 
spectrums. As could be seen in Fig. 3, the typical 
transmittance peaks of silica-based composites 
could be attributed in the range of 1020-1110 
cm-1 signifying the asymmetric stretching of Si-
O-Si mode.  Also, Si-OH spectrum which located 
at 960 cm-1 denotes the asymmetric bending and 
stretching vibration. However, peak at around 
1500 cm-1 is related with amide II bonds between 
carboxyl’s of FA molecules and amine’s of KCC-1-
NH2 [41,58].

In order investigating the surface morphology 
and size of nanoparticles, FE-SEM and TEM images 
of the KCC-1, KCC-1-NH2 and KCC-1-NH-FA were 
recorded (Fig. 4 (a, b and c)). The TEM and FESEM 
pictures showed the fibrous shape, morphological 
and structural features of the nanoparticles which 
approximate average sizes of KCC-1, KCC-1-NH2 
and KCC-1-NH-FA are determined to be about 175, 
190, and 200 nm, respectively.

The EDX (Energy-Dispersive X-ray) analysis was 
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Entry Products Acid Amine Amide Time Yielda (%) 

1 3a 

  
 

3h 89 [14] 
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3h 80  [14] 

3 3c 

  
 

3h 78 [49] 

4 3d 

 
 

 

3h 85 [50] 

5 3e 

  
 

3h 75  [15] 

6 3f 

  
 

3h 75  [11] 

7 3g 

  
 

3h 74  [11] 

8 3h 

  
 

3h 80  [51] 

9 3i 

  
 

3h 78  [52] 

10 3j 

  
 

3h 83  [53] 

11 3k 

 
 

 

3h 74  [54] 

12 3l 

 
 

 

3h 76  [55] 

Table 1. Direct amidation of different acids with amines using KCC-1-NH-FA catalyst.
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Continued Table 1. Direct amidation of different acids with amines using KCC-1-NH-FA catalyst.

Entry Products Acid Amine Amide Time Yielda (%) 

13 3m 

 

 

 

3h 84  [56] 

14 3n 
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5h 68  [57] 
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Isolated product. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic procedure for the synthesis of KCC-1-NH-FA. 
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also applied for elementary analysis (Fig. 1S). EDX 
analysis proved that KCC-1-NH-FA contain the C, O, 
N and Si elements that exhibit the mass percent 

of N, O and C are increased which confirm the 
efficient surface modification of KCC-1 with APTES 
and FA.

 

 

  

 

Fig. 4. TEM (a, b and c) and FESEM (d) images of KCC-1, KCC-1-NH2 and KCC-1-NH-FA.
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The X-ray diffraction (XRD) was employed to 
investigate the crystallinity of KCC-1, KCC-1-NH2 
and KCC-1-NH-FA (Fig. 2S). Two main spectra which 
could be seen in Fig. 2S prove the increasing the 
crystallinity from KCC-1 to KCC-1-NH2-FA. The wide 
peak at 2θ = 20° and 30° is related to the formless 
silica. Moreover, comparison of the three spectra 
of the KCC-1, KCC-1-NH2 and KCC-1-NH-FA shows 
that peaks were transmitted to the upper 2θ 
values where is a logical cause for the superficial 
functionalization of KCC-1 and preparation catalyst 
[44,58].

The BJH, BET analysis and the N2 adsorption/
desorption isotherms of the KCC -1, KCC-1-NH2 
and KCC-1-NH2-FA were applied to evaluate the 
porous essence, porous volume and specific 
surface area of the nanocomposites (Fig. 3S). The 
average pore size, surface area and pore volume 
of KCC-1, KCC-1-NH2 and KCC-1-NH-FA are seen in 
Table. 2. As could be seen, the porous volumes of 
KCC-1, KCC-1-NH2 and KCC-1-NH-FA are 1.52 to 1.1 
and 1.3 cm3/g and the revealed results proved that 
surface area of KCC-1, KCC-1-NH2 and KCC-1-NH-FA 
are 617 m2/g to 367 and 397 m2/g, respectively. 
Also, average porous diameter broadcast of the 
KCC-1, KCC-1-NH2 and KCC-1-NH-FA composites 
are 9.9, 11.9 and 13.2 respectively (Table. 2).

The zeta potential analysis of KCC-1, KCC-1-
NH2 and KCC-1-NH-FA were determined at pH 
7.5 to investigate the surface charge to found the 
possible surface modification. Also, the KCC-1 
simple dendritic nanocomposites show negative 
charge at pH 7.5 where could be caused from 
Si-OH functional structures. Moreover, the zeta 
potential analysis of the KCC-1-NH2 and KCC-1-
NH-FA confirmed the positive charges of these 
nanocomposites which approve the anchoring 
amine and FA moieties on the surface of the 
porous nanocomposite. Also, this positive charge 
was shown the acidic activity of FA group in the 
direct amidation reaction. 

Also, dynamic light scattering (DLS) analysis 
of the KCC-1, KCC-1-NH2 and KCC-1-NH2-FA 
confirmed that the hydrodynamic diameter of 

nanocomposite increased from KCC-1 to KCC-
1-NH-FA which confirm the accurate surface 
functionalization with NH2 and FA groups.

Catalytic activity of the KCC-1-NH-FA nanocatalyst 
in the direct amidation of carboxylic acids with 
amines

The catalytic performance of the nano-silica 
KCC-1-NH-FA and the effect of several parameters 
were investigated in the direct amidation of 
carboxylic acids with amines. Initially, the direct 
amidation of acetic acid (1 mmol) with aniline 
(1 mmol) under solvent free conditions at 25 ℃ 
and was performed as a model reaction. Then, 
the effect of temperature and reflux conditions 
to increase the yield of synthetic products was 
studied. To finding the optimize conditions of the 
reaction, first investigations were applied under 
various conditions. As could be seen the results 
are shown in Table 3. The direct amidation of 
acetic acid (1 mmol) with aniline (1 mmol) without 
using the nanocatalyst at 25 ℃ under solvent-free 
conditions the corresponding amide in 5% after 
48 h was investigated (entry 1, Table 3). When 
the amidation reaction was performed with using 
of 20 mg of KCC-1 under solvent free conditions, 
the desired amide was obtained in 5% yield after 
48 h (entry 2, Table 3). Also, when reaction was 
performed with using of 20 mg of KCC-1-NH2 in 
the similar conditions obtained product in 5% 
yield after 48 h (entry 3, Table 3). Moreover, 
when reaction was performed with using of 20 
mg of KCC-1-NH-FA as a catalyst, the obtained 
product was isolated in 20% yield respectively 
after 48 h (entries 4, Table 3). In continue, we 
tested the influence of ultrasonic irradiation 
and heating on this chemical amidation and the 
results weren’t considerable (entries 5 and 6, 
Table 3). Then the influence of different solvent 
on the chemical transformation was tested and 
toluene was the best solvent to improve the yield 
of synthetic compounds. Therefore, the reaction 
was proceeding in the presence of 20 mg of KCC-
1-NH-FA in toluene under reflux condition (entries 

 
 
 
 
 
 
 
 

Material type Pore size (nm)a Pore volume (cm3 g-1)b Surface Area (m2 g-1) 
KCC-1 9.9 1.5 617 
KCC-1-NH2 11.9 1.1 367 

KCC-1-NH-FA 13.2 1.3 397 
                      a Pore size was measured by BET method. b Pore volume investigated from nitrogen physicosorption isotherm 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 2. The obtained results from BJH, BET analysis
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7-14, Table 3). It is observed that the reaction time 
decreased and the product was isolated in 89% 
yield after 3 h (entry 14, Table 3).

 Thus, these result clearly confirmed the 
impressive effect of KCC-1-NH-FA catalyst on the 
amidation process. Increasing the amount of 
nanocatalyst to 25, 30 mg didn’t have increasing in 
the yield of the reaction (Fig. 5).

After obtain the optimized reaction conditions, 
we then tested the possibility of applying this 
procedure by utilizing of different carboxylic acids 
with a various amines using of KCC-1-NH-FA (20 
mg) in toluene under reflux conditions. (3a-o). 
As a result, different products of amides (4a-m) 

were achieved in high yields without any side 
products (Table 1). By using of these conditions, 
the reaction of aliphatic, hetro aromatic, cyclic and 
linear aliphatic amines with aliphatic carboxylic 
acid produced the desired amides in 74-89% 
yields after period of time. (Entries 1-9, Table 1). 
Also, direct amidation of aromatic carboxylic acid 
with four class of amines obtained the formation 
of the desired amide derivatives in 61- 84% yields 
(entries 10-15, Table 1). 

The reusability of the nanocatalyst is an 
advantage for organic synthesis so this important 
factor was tested by applying the model reaction 
and our synthetic nanocomposite was recovered 

 
 
 
 
 
 

 

Entry Catalyst Conditions Time Yield (%) 

1 - Solvent free, room temperature 
48 h 

 

5 
 2 KCC-1 Solvent free, room temperature 

3 KCC-1-NH2 Solvent free, room temperature 
4 

KCC-1-NH-FA (20 mg) 
 

Solvent free, room temperature 20 
 5 Bath ultrasonic, solvent-free, r.t. 24 h 

 6 Bath ultrasonic, solvent-free, 60 ℃ 29 
7 Water, room temperature 

48 h 
 

20 
8 Water, reflux 37 
9 Ethanol, room temperature 23 

10 Ethanol, reflux 39 
11 Acetonitrile, room temperature 25 
12 Acetonitrile, reflux 52 
13 Toluene, room temperature 24 h 40 
14 Toluene, reflux 3 h 89 

a Reaction conditions: acetic acid (1 mmol) and aniline (1 mmol). 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Various conditions for the direct amidation of acetic acid with aniline a.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 8
18

40

60

89 89 88

0
10
20
30
40
50
60
70
80
90

100

0 4 8 12 16 20 24 28

Y
ie

ld
 (%

)

Amunt of KCC-1-NH-FA (mg)
Fig. 5. Optimization of the condition for direct amidation of various acids (1.0 mmol) with amines (1.0 mmol) using KCC-1-NH-FA 

catalyst, toluene (4 mL), reflux, 3 h.



679J Nanostruct 10(3): 671-681, Summer 2020

S. Azizi  et al. / Folic Acid Functionalized Dendritic Fibrous Nano-silica as a Nanocatalyst

up to six times without significant losses in the 
catalyst performance (Fig. 6). Thus, at any cycle 
ethyl acetate was mixed in the solution and was 
filtered through a sintered funnel to recover the 
catalyst. Then, the used catalyst was washed 
several times with absolute acetone and deionized 
water and dried under vacuum. 

Mechanism study
To the best of our knowledge, the mechanism is 

not very clear. However, the suggested mechanism 

of direct amidation of carboxylic acids with amines 
is postulated in Fig. 7.

Pathway (a): The reaction can initiate with 
construction of a stable ammonium carboxylate 
salt with using of high acid capacity of KCC-1-NH-FA 
nanocatalyst and finally, dehydration resulting the 
construction of desired amide products (Fig. 8a).

Pathway (b): the synthesized nanocatalyst leads 
to the alteration of amine into ammonium salt. 
Then, ammonium salt and carboxylic acid were 
reacted together and resulted in intermediate 

Fig. 8. Probable mechanism for direct amidation of carboxylic acids with amines catalyzed by KCC-1-NH-F
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Fig. 7. Direct amidation of carboxylic acids with amine products using KCC-1-NH-FA.
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I. in continue a proton transfer as well as water 
elimination leading to the construction of amide 
bond (Fig. 8b).

CONCLUSION
We reported an effective nanocatalyst based 

on KCC-1-NH-FA nanoparticles. The synthesized 
nanocomposite was efficaciously utilized for 
direct amidation of carboxylic acids with amines 
through a reaction under reflux conditions. In 
addition, this methodology characterized by 
advantages such as good yields, short reaction 
times, excellent catalytic activity and reusability 
of the heterogeneous nanocatalyst without any 
important losses in the overall yield.
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