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SiC nanocrystals are synthesized by sol-gel processing with 
tetraethoxysilane and green carbon sources (sugar, molasses, and stevia 
extract) as starting materials. The reactions of carbon precursors 
and silicon were investigated using density functional theory. To 
obtain the discrepancy between the energy levels of the interacting 
orbitals of precursors, molecules were optimized using B3LYP/6-
31+G(d,p) method. XRD, FE-SEM, TG-DTA and FTIR analysis were 
implemented in order to compare the efficiency of different carbon 
sources. According to XRD experiments, SiC nanocrystals prepared by 
sugar and molasses had no contamination, while the sample prepared 
by stevia has impurity in the form of carbon and silica. TG-DTA results 
revealed that this difference is due to the fact that the carbon source in 
stevia did not react efficiently with silicon. Moreover, based on the DFT 
study and HOMO and LUMO analysis on the reactive energy of silicon 
and carbon precursors, it is revealed that sugar has the best reactivity 
among carbon sources for SiC formation.

INTRODUCTION
Many methods have been developed to 

produce nanosized and uniformly shaped SiC 
powder, such as combustion synthesis [1], CVD 
[2], thermal evaporation [3], sol-gel carbothermal 
reduction [4], plasma technique [5] and microwave 
synthesis [6]. The comparison of different methods 
is reported in Table 1.

Recently, SiC nano-powder is used for its 
unique mechanical [16], electrical [17], optical 
[18], photoluminescent [19], supercapacitative 
[20, 21], and thermal properties [22, 23]. However, 
the application of SiC as a support for catalytic 
materials is limited by its maximum attainable 
surface area [24]. Consequently, there has been 
a lot of efforts for finding a process to produce 
nanosized SiC with considerable porosity and high 
surface area. To produce powders with smaller 

particle size, surfactants incorporation is required, 
surfactants are usually toxic and cause polluting the 
environment and damaging the ecosystem [25]. 
Most of the materials used as carbon precursors, 
such as resins, are expensive petrochemicals [26]. 
Also, among different approaches proposed for 
producing SiC nano-powder, the green synthesis 
approach might be a beneficial method [14]. This 
concept includes the synthesis and manipulation 
of nanomaterials by an efficient, environment-
friendly, and safe technique that could be used 
for human welfare [27-29]. Moreover, it has 
also received merit due to its simplicity, cost-
effectiveness, and easy recoverability. This method 
includes the adoption of nontoxic raw materials 
and eco-friendly reactants and solvents as well as 
elimination of hazardous by-products, which are 
the main principles of green synthesis process [28, 
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30]. Green sol-gel is one of the best methods of 
chemical synthesis that is environmentally friendly 
and can synthesize high purity nanocrystals. 
This method is cost-effective and has simple 
preparation process that leads to nanostructured 
and homogeneous powder [31].

One of the best candidates for the green 
synthesis process is the extract of plants as the 
natural raw material. Due to their non-toxicity 
and the ability to synthesize at low temperatures 
and relatively high purity, these sources are of 
great interest. Stevia is a plant from the family of 
sweet herbs from South America that are grown 
in China, Southeast Asia [32] and Iran [33]. Stevia 
glycosides are used for food and beverages in 
some countries [34-36]. This sweet substance 
contains different kinds of glucose, which is used 
to synthesize nanoparticles such as Au [33, 37], 
CdO [38, 39], FeO [40], ZnS [41] and Ag [42]. On 
the other hand, Molasses are a dark substance 
from sugar beet [43]. It is made in sugar beet 
factories and contains 50% glucose, minerals, and 
amino acids. It contains nutrients for the growth 
of yeasts, which is mainly used in the production 
of alcohol and animal feed [44]. It was also used 

as a carbon source for the synthesis of Fe-C nano-
reactors [45] and the synthesis of Ag nanoparticles 
[46]. Accordingly, it can be used in the sol-gel 
process for preparing ceramic materials, due to 
the relatively simple procedure, low cost, good 
chemical uniformity and purity, and relatively low 
synthesis temperatures which is necessary for 
obtaining ultrafine powder [10, 47, 48].

The structure and reaction mechanism of a 
few materials have been studied based on density 
functional theory (DFT) [49,51]. DFT is to simplify 
the molecular system and perform quantum 
mechanical calculations using quasi-potentials for 
each atom in the system [52-54].

In this study, we have applied the green 
synthesis concept by the sol-gel process to 
prepare SiC nanocrystals with different green 
sources of carbon including, sugar, molasses and 
extract stevia. In this method, the lesser harmful 
chemical is used to produce SiC nanocrystals and 
finally the efficiency of these green sources for 
producing pure SiC is evaluated using DFT method. 
The reaction mechanisms and orbitals energy of 
the precursors of the SiC powder are analyzed via 
DFT method.

1 

 

Ref/ Year 
Precursor 

Method Temperatures (°C) Time (h) Size 
Silicon Carbon 

[2]/ 2000 Silane Acetylene CVD 900-1250 0.4-1 0.1– 0.2 µm 

[7]/ 2009 Silicon powder Carbon black Ball milling 1735-1760 4-14 0.5 mm 

[8]/ 2009 TEOS Pine wood Sol-gel  
(green fabrication) 1600 4 100 nm 

[9]/ 2010 TEOS Phenolic resin Sol-gel 1600 1 30-50 nm 

[5]/ 2011 Silica 

Pyrolytic soot 
Columbian soot 

Cancarb soot 
Char 

Graphite 

Ball milling and RF 
plasma technique 610 1 

0.32 µm 
0.23 µm 
0.43 µm 

10-20 µm 
7-10 µm 

[10]/ 2012 TEOS Phenolic resin Sol-gel 1500 3 0.001–6 µm 

[11]/ 2013 Silicon powder Carbon blacks Molten salt synthesis 900–1200 6 10 nm 

[12]/ 2015 TEOS Saccharose Sol-gel  
(green fabrication) 1450 10 100-300 nm 

[6]/ 2017 Single crystal silicon Activated carbon Microwave 2200–2400 30 0.1-2 µm 

[13]/ 2018 Silicon powder Coked rice husks Ball milling 
(green fabrication) 1580 3 50-120 nm 

[14]/ 2018 Rice husk silica Phenolic resin CVD 
(green fabrication) 1600 3 239-662 nm 

[15]/ 2018 Silicon powder Diatomite powder 
phenolic resin 

catalytically 
synthesized 1400 3 30-300 nm 

This study TEOS 
Sugar 

Molasses 
Stevia extract 

Sol-gel  
(green fabrication) 800 3 

42.7 nm 
43.3 nm 
35.5 nm 

 

Table 1. The comparison of different methods for SiC synthesis.
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MATERIALS AND METHODS
Materials preparation

Tetraethyl ortho-silicate (TEOS Merck) was 
used as silicon source and the carbon sources were 
sugar, molasses and stevia. Also ethanol was used 
as solvent and hydrochloride acid (HCl Merck) as 
catalyst. Extract stevia was produced with thirty 
grams of powder of dried leaf of stevia, that was 
boiled in 100 ml of distilled water for 5 minutes. 
The details of this method are explained in the 
previous work [20]. Each carbon source (sugar, 
molasses, and stevia extract) with a constant ratio 
of 0.6 is mixed with other materials. In order to 
complete the hydrolysis reaction, the as-prepared 
solution was kept in an isolated place for 18 hours. 
Resultant gels were kept in the hot air oven for 
4 hours in 60˚C to dry as shown schematically in  
Fig. 1. During the pyrolysis process, the samples 
were kept in a furnace with an argon atmosphere 
at 800˚ C for a time period of 3 hours. 

Characterization
After sorting the samples, structural and 

composition analysis was performed using X-ray 
diffraction technique (Philips Xpert) with Cu-Kα as 
X-ray source. For the evaluation of agglomerates 
size and qualitative analysis of synthesized powders 
and whiskers, field-emission scanning electron 
microscope (FE-SEM) equipped with EDAX analyzer 
was used. In order to evaluate component’s bond 
type in the gel samples, Fourier-transform infrared 

spectroscopy (FTIR) device was used in the range 
of 400–4000 cm−1. Thermal analysis (TG/DTA) was 
also used to evaluate the nature of the reaction 
inside the gel samples, the rate of heating in this 
case, was 20 ˚C/min.

Calculations
To obtain the molecular orbital energy of 

silicon and carbon precursors [15], the DFT 
method was used. The optimization of molecule’s 
structures by B3LYP theory using 6-31G +(d,p) bias 
set [55] were performed using Gaussian 09 [56]. 
In addition, using GaussView [57], their highest 
occupied molecular orbitals (HOMOs) and the 
lowest unauthorized molecular orbitals (LUMOs) 
of silicon and carbon precursors are calculated.

RESULTS AND DISCUSSION
Samples synthesized using sugar, molasses, 

and stevia extract, are respectively named SiC1, 
SiC2 and SiC3. Fig. 2 presents the FTIR spectrum 
for the gel prepared by the reaction of TEOS 
and carbon sources. The peaks at 454-463, 522-
585, 947-962 and 1071-1078 cm-1 correspond to 
siloxane bonds (Si-O-Si) [7, 58]. These bonds are 
related to condensation reactions and hydrolysis 
of silicon alkoxides. The peak at 3430-3437 cm-1 
represents OH functional groups that seem to have 
formed (O-H) bonds with Si atoms [59]. The peak 
in the range of 1642–1671 cm-1 belongs to doubled 
bonds of carbon (C=C) [9]. Moreover, 791-797 

 

 Fig. 1. The flowchart of the experimental procedure.
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cm-1 peak in this figure represents (Si-O-C) [47, 60] 
bonds that are originally formed between siloxane 
and carbon atoms from different carbon sources 
[61, 62]. As demonstrated in Fig. 2, the C=C peak 
at 1642 cm-1 for SiC3 sample is weaker than other 
two samples [61], which means lesser amount of 
available carbon content, and that could be the 
reason for the peaks of XRD patterns (Fig. 3) which 
shows a lot of silicon impurity in the product 
prepared using the gel of this sample. The lesser 
amount of available carbon will lead to incomplete 
reaction between the carbon source and silicon 
source in this gel. The down-fall at 791-797 cm-

1,which is related to Si-C-O bond, is sharper in SiC2 
sample as well (Fig. 2c) [47, 60], which means that 
SiC2 has the highest potential for SiC formation in 
comparison with other two carbon sources, since 
Si-C-O bond can easily change to Si-C bond by 

heating [63, 64]. This result is consistent with the 
XRD patterns shown in Fig. 3.

Fig. 3 shows XRD patterns, which were used to 
check the crystal structures of the prepared silicon 
carbide particles as the synthetic product. As you 
can see in this figure, all samples are fully crystalline 
which means that the pyrolysis temperature of 
800 °C was high enough to generate a crystalline 
product. Indexed peaks in Fig. 3 illustrates the 
XRD analysis of SiC nano-powder as the SiC3 
sample. The XRD peaks at 28, 47 and 71 degrees 
corresponding to silicon (Si) [11] and the 34, 38, 42 
and 63 degrees regarding carbon (C)[15], and the 
peaks of SiC are at 33, 46 and 56 degrees [65, 66]. 
XRD results indicate that the reaction between 
silicon source and the carbon source is not 
completed in the SiC3 sample since this sample 
has silicon and carbon contamination.

 
Fig. 2. FTIR spectrum for gel powders of samples.
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Fig. 3 also illustrates the XRD patterns of SiC1 
and SiC2 samples. The XRD peaks are at 38, 44, 50, 
65 and 78 degrees in this figure. And as it can be 
seen, all of those peaks belong to silicon carbide. 
This points out that the samples prepared by 
SiC1 and SiC2 precursors have no contamination 
and the SiC peaks in the SiC2 sample are sharper. 
According to Fig. 2, the SiC1 and SiC2 have stronger 
doubled bonds of (C=C) and (Si-O-C) compared 
to SiC3. These results support the idea that the 
reaction between molasses and TEOS is more 
efficient for the production of pure crystalline 
SiC. Since the calcination performed in argon 
atmosphere, there is no evidence of SiO2 impurity 
in the samples, which is due to the fact that direct 
carbon oxidation will not happen in the inert 
atmosphere [29].

The average crystallite size of the SiC nano-
powder in the samples was calculated using the 
Scherrer equation as follows: 

D = 0.9λ/(β cos θ)     (1)

Where β is FWHM (full width at half maximum) 

of the peaks, θ is the Bragg’s angle and λ = 1.54. 
For crystallite size calculations, β is measured from 
(111) plane of SiC using the XRD pattern in Fig. 
3. The calculated crystallite size of SiC, using the 
above equation was respectively 42.7 nm, 43.3 nm 
and 35.5 nm for the SiC1, SiC2, and SiC3.

Fig 4 illustrates the thermal analysis of the gel 
samples. From DTA analysis (Fig. 4a) it can be seen 
that all samples undergo similar reactions. The first 
endothermic peak at 160°C is due to dehydration 
of the sample (including the removal of the 
structural water) [8]. This endothermic reaction 
is followed by two exothermic reactions at 370 
°C and 731 °C, which leads to SiC nano-powder 
formation (Fig. 4a) [67]. Thermogravimetric 
analysis of the samples (Fig. 4b) shows a 
secondary weight loss for the SiC3 sample, which 
could be due to the removal of carbon content or 
other volatile materials instead of the reaction 
of carbon with silicon. This carbon removal will 
reduce the amount of carbon available for SiC 
formation which consequently raises the amount 
of silicon contamination. This result confirms the 

 
Fig. 3. XRD patterns of the SiC nano-powder samples.
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XRD result, which shows huge amount of silicon 
contamination existed in the SiC3 sample. Among 
three samples, the SiC2 sample has the sharpest 
peaks related to exothermic reactions (Fig. 4a) and 
also undergoes lesser weight loss due to water 
removal. These phenomena facilitate the SiC 
nano-powder formation, as it can also be seen in 
XRD patterns. 

DFT method was used to obtain the molecular 
orbital energy of silicon and carbon precursors. 
their highest occupied molecular orbitals 
(HOMOs) and the lowest unauthorized molecular 
orbitals (LUMOs) of silicon and carbon precursors 
are shown in Fig. 5.

In Fig. 6 we show the reactivity of each 
carbon precursor, which also illustrates the 
energy difference of HOMO and LUMO of silicon 
precursor and carbon sources. As it turns out, 

the least energy is related to the sugar precursor, 
which indicates among different carbon sources, 
sugar reacts more efficiently with Si precursor. 

There are several proposed mechanism for SiC 
formation using TEOS and carboneous materials 
[68]. Some of them assumed that the formation 
of SiC occurs through a direct solid state diffusion 
of C atoms towards the reacting interphase of SiO2 
which is formed via decomposition of TEOS. The 
proposed reaction is as follows:

SiO2+3C=SiC+2CO                      (1)

While other proposed mechanism are based on 
two step reaction system based on the following 
reactions:

SiO2+C=SiO+CO                                   (2)

SiO+3CO=SiC+2CO2                  (3)

 

 Fig. 4. Thermal analysis of the gel samples heated 20 °C/min in a nitrogen atmosphere, a) DTA analysis and, b) TG analysis of SiC 
precursor gel.
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Fig. 5. Optimized structure of the silicon and carbon precursors.

Fig. 6. The HOMO and LUMO energy levels of the silicon and carbon precursors.
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The work carried out on carbon/silica powder 
mixtures suggest that the rate of SiC formation 
is controlled by the rate of SiO formation. 
Furthermore, when the free carbon on the surface 
has been consumed, SiO is produced via reaction 
between SiO2 and SiC as follows:

2SiO2+ SiC = 3SiO+CO     (4)

When dealing with carbon and silica powders, 
at elevated temperatures, at the interface of C/
SiO2, a SiC layer is produced, so the silicon monoxide 
cannot be produced by reaction (2) anymore. The 
binary interface of C/SiO2 is converted into the 
ternary interface of C/SiC/SiO2, and the silicon 
monoxide is produced by reaction (4), and this will 
slow down the rate of SiC formation. 

However in the case of this study carbon and 
silica powders are not starting materials. Instead of 
that a homogenous gel like mixture of carboneous 
material and TEOS is used, and this will lead to 
closest possible distance between carbon and 
silicon, so there is no need for carbon diffusion 
and that’s why the reaction completes at lower 
temperatures in a short period of time.

The best results are obtained from sugar 
precursors, so FE-SEM and MAP element analysis 
were carried out for this sample. Fig. 7 shows 
the FE-SEM image of the SiC1 sample. Based on 
these Figs, powder prepared by this method has 
irregular morphology. As it can be seen from MAP 
elemental analysis (Fig. 7 c), SiC is formed in the 
entire sample surface and there are no other 

 

 

 

 

 

 

 

 

 
Fig. 7. a, b) FE-SEM micrographs c) MAP of elements analysis of SiC powder synthesized using molasses as a carbon source.
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impurities. The size of the agglomerates is quite 
larger than the size of the nano-powder measured 
by XRD analysis. As it is expected and reported 
elsewhere [69, 70], it is due to the fact that XRD 
measures the crystallite size but SEM shows the 
agglomerate size. However, the resultant powder is 
brittle and could be easily crushed to fine particles 
by simple grinding. This easy crushing capability is 
due to low synthesis temperature of 800°C, and in 
comparison with the work of Wang et al. [28], and 
Nersisyan et al. [2], who used 1250°C to 2300°C 
for synthesis, it is reasonable to expect a spongier 
product, since higher synthesis temperature 
causes strong bonding between agglomerates.

CONCLUSIONS
This study shows that SiC nano-powder could 

be synthesized by the sol-gel process at a relatively 
low temperature with easily available chemicals 
and green carbon sources. Among carbon sources, 
sugar seems to be the best candidate, as it efficiently 
reacts with TEOS to produce nano-powder and 
pure SiC nano-powder. On the other hand, stevia 
did not react well with TEOS due to large amount 
of carbon source or other volatile material that 
had been removed from the sample before SiC 
formation reaction. This result is also supported by 
XRD results that show contamination exists in SiC 
nano-powder produced by SiC3. Comparing the 
XRD results with Thermal analysis (TG/DTA) and 
FTIR analysis also proves the efficiency of molasses 
as a green carbon source for the production SiC 
nano-powder. The SiC nano-powder formation 
mechanism was investigated using the DFT 
method. As HOMO and LUMO analysis shown in 
this research, sugar has better reactivity with Si 
precursor for the formation of SiC. 
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