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In this work, NdFeO3 nanoparticles were synthesized through a simple 
co-precipitation method. The formation of NdFeO3 particles was verified 
by X-ray powder diffraction, infrared spectroscopy, vibrating sample 
magnetometer, and transmission electron microscopy analysis. Polyaniline 
and chitosan were employed as proper support for production of metal 
nanoparticles. Novel Pt-NFO/PA-CH nanocomposite was fabricated 
by immobilization of Pt nanoparticles on the PA-CH support in the 
presence of NdFeO3 nanoparticles. The prepared nanocomposite was 
characterized by transmission electron microscopy and X-ray powder 
diffraction analysis. The catalytic performance of the Pt-NFO/PA-CH 
nanocomposite was evaluated for electro-oxidation of methanol through 
CO stripping voltammetry, cyclic voltammetry, chronoamperometry, 
and electrochemical impedance spectroscopy. Durability of the Pt-NFO/
PA-CH catalyst was investigated and the effects of several factors such 
as temperature, scan rate, and methanol concentration were studied for 
methanol oxidation. Enhanced catalytic performance of Pt-NFO/PA-CH 
nanocatalyst compared to Pt/PA-CH catalyst recommends its application 
for methanol electro-oxidation in direct methanol fuel cells.

INTRODUCTION
Today, the use of fossil fuels has been limited 

due to the pollution of their combustion and the 
limited sources. To meet the energy demands 
of the world, scientists are looking for the new 
alternative energy sources. Recently, direct 
methanol fuel cells (DMFCs) have been considered 
as new, renewable and clean energy sources due 
to their simplicity, high efficiency, simply fuel 
storage, low pollution, and high energy densities 
[1-4]. DMFCs are new generation of the fuel cells 
which operate on the basis of direct oxidation 
of methanol as fuel [5, 6]. Methanol has several 

advantages as a liquid fuel such as easy availability, 
simple storage, handling and transportation, 
and high energy density. Among noble metals, 
platinum has greater catalytic activity for methanol 
oxidation reaction (MOR) [7, 8] but its high price 
and easily poisoning with carbon monoxide (CO) 
as byproduct of MOR constrain its widespread 
utilization [9]. CO intermediates can strongly be 
adsorbed at the Pt nanoparticles’ surface and 
poison it for electro-oxidation of methanol [10, 
11]. 

To develop new anode catalysts with excellent 
activity for MOR in DMFCs, to reduce the amount 
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of Pt loading and to reduce its poisoning effect, 
structure of support material and also composition 
of Pt-based catalysts are very important [12-17]. 
Extensive researches have been done in developing 
the promising catalysts for DMFCs through alloying 
Pt with other metals and modifying the electronic 
structure of Pt catalysts [18-26]. In DMFCs, 
Pt-based catalysts have lower cost, improved 
antipoisoning effect, and enhanced catalytic 
activity towards electro-oxidation of methanol 
compared with pure Pt catalyst [27-29]. For 
example different metal oxides such as, Ce, Pr, Nd 
and Sm oxides incorporated on mesoporous carbon 
have been utilized to enhance the performance 
of Pt nanoparticles for MOR [30]. Amin used Pt-
CuO/C catalyst for MOR [31]. Rare earth oxides 
have been used to modify Pt/C electrocatalysts 
for MOR [32], and Pt-Fe nanoparticles supported 
on reduced graphene oxides have been used for 
methanol electro-oxidation [33]. NdFeO3 catalysts 
have been used for various chemical reactions. 
For example, PrFeO3 and NdFeO3 thick films have 
been synthesized and used for CO2 sensing [34]. 
Palladium doped NdFeO3 catalysts have been 
used for their acetone-sensing properties [35]. 
Pt nanoparticles doped on NdFeO3 and carbon 
nanotubes have been utilized for polymeric 
fuel cells [36]. The performance of Palladium 
nanoparticles accompanied by NdFeO3 perovskite 
has been investigated for direct methanol alkaline 
fuel cells [37]. 

A simple and effective method to enhance 
the performance of Pt catalysts is dispersing 
Pt nanoparticles on a conductive material as 
support. Several kinds of carbon support materials 
including graphene [38], carbon nanotubes [39], 
carbon vulcans [40], functionalized reduced 
graphene oxide [41], carbon blacks [42], carbon 
nanofibers [43], and conducting polymers [44-46] 
are common supports for metal nanoparticles in 
the fuel cell applications. Conducting polymers 
such as poly (o-toluidine) [47], polyaniline (PA) 
[48, 49], poly (o-methoxyaniline) [50], polypyrrole 
[51-53], and their derivatives are known as proper 
supporting materials for metal nanoparticles due 
to their high conductivity and large surface area. 
Polyaniline and its derivatives have attracted 
increasing attention as support for Pt nanoparticles 
due to their porous structure, large surface area, 
facil synthesis, and high chemical stability [54-
56]. Chitosan (CH), a biopolymer produced by 
deacetylation of chitin, is used as support for 

metal nanoparticles in the fuel cells and shows 
strong affinity for transition metals [57]. 

Here, NdFeO3 (NFO) nanoparticles were 
successfully synthesized and used accompanied 
by Pt nanoparticles to improve their catalytic 
activity for methanol electro-oxidation in acidic 
media. For the first time, Pt and NFO nanoparticles 
were dispersed on polyaniline and chitosan (PA-
CH) support to prepare the novel Pt-NFO/PA-CH 
nanocatalyst in one step process. The catalytic 
performance of Pt-NFO/PA-CH nanocatalyst and 
also its CO-tolerance were studied for methanol 
electro-oxidation and compared with those of 
Pt/PA-CH. The effects of several experimental 
factors were investigated on the electrocatalytic 
performance of Pt-NFO/PA-CH for MOR. The 
durability of the prepared catalysts was also 
investigated for MOR. Pt-NFO/PA-CH nanocatalyst 
showed better poisoning resistance and 
considerably improved catalytic performance for 
MOR compared to Pt/PA-CH. 

MATERIAL AND METHODS
Fe(NO3)3.9H2O, NdCl3.6H2O, NaOH, and 

octanoic acid were prepared from Merck and 
used for synthesis of NdFeO3 nanoparticles. 
Hexachloroplatinic acid and NaBH4 (96%) were 
purchased from Merck and utilized to prepare Pt 
nanoparticles. H2SO4 (98% from Merck) was used 
as electrolyte. Polyaniline (PA) from Sigma-Aldrich 
and chitosan (CH) with medium molecular weight 
(Fluka) were utilized as support to prepare Pt-NFO/
PA-CH nanocomposite. Acetic acid 1% (glacial, 
100% Merck) solution was used for preparation 
of chitosan solution. Methanol (CH3OH, 99.2%) 
was obtained from Merck and used for methanol 
oxidation (MO) investigation. 

Preparation of NFO nanoparticles
To prepare NFO nanoparticles, 0.01 mole 

NdCl3.6H2O and 0.01 mole Fe (NO3)3.9H2O were 
dissolved in 10 ml of deionized water. After the 
addition of 2 ml octanoic acid as surfactant, the 
solution was stirred vigorously while its pH was 
reached to 9 using NaOH 2 M. After complete 
precipitation, the obtained solution was irradiated 
with ultrasonic waves at 50 ̊C for 60 min (250 W, 
40 kHz). The resulting precipitate was centrifuged, 
washed, and dried at room temperature. The 
obtained powder was calcined at 600 ̊C for 4 h. NFO 
nanoparticles were synthesized and characterized.
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Synthesis of Pt-NFO/PA-CH nanocomposite
Pt-NFO/PA-CH nanocomposite was prepared 

through the following method: 1 mg PA was 
dispersed in the mixture of 17.5 ml deionized 
water and 2.5 ml chitosan and sonicated for 1 h. 
Then, 2 mg of the prepared NFO nanocatalysts 
was added to the above mixture and sonicated 
for 30 min to get the uniform dispersion of NFO 
nanoparticles. Afterwards, 25 µl H2PtCl6 was added 
to the solution and stirred magnetically for 1 h to 
obtain H2PtCl6 solution (0.00125 M). Then, 50 µl 
NaBH4 (3M) was added rapidly. Having been stirred 
for 24 h, the black suspension was centrifuged and 
washed for several times. After drying at 60 ˚C for 
12 h, Pt-NFO/PA-CH nanocomposite was obtained. 
Pt/PA-CH was prepared with the same procedure 
without using NFO nanoparticles. 

Preparation of the electrodes
The modified working electrodes were 

prepared by mixing 2 mg of the corresponding 
catalyst powder in 1 ml chitosan solution. After 
sonication for 10 min, 5 µl of the suspension was 
transferred to the polished working electrode and 
dried at ambient temperature.

Characterization
An alternating gradient force magnetometer 

(AGFM) apparatus fabricated by Meghnatis 
Daghigh Kavir Co. (Iran) was used to investigate 
the room temperature magnetic property of 
the prepared NFO nanocatalyst, in an applied 
magnetic field sweeping between ± 10,000 
Oe. The chemical components of the prepared 
catalysts were characterized by X-ray diffraction 
(XRD) using a Philips X-ray diffractometer with Ni-
filtered CuKα radiation. Fourier-transform infrared 
spectroscopy (FT-IR) spectra of NFO nanoparticles 
and octanoic acid were recorded on a Galaxy 
series FTIR5000 spectrophotometer. Transmission 
electron microscope (TEM) images taken with 
TEM (Zeiss - EM10C - 100 KV) were used to 
observe the morphology of catalysts. Ultrasonic 
irradiation of the samples was controlled by a 
multivalve ultrasonic generator (Band line MS 
73), fitted out with a converter/transducer and 
titanium oscillator which operate at 20 kHz. The N2 
adsorption/desorption isotherms were measured 
using a BET instrument (Belsorp mini II, BEL Japan 
Ins.) at the temperature of liquid nitrogen.

All electrochemical investigations were done 
using an Autolab potentiostat (PGSTAT 302N, Nova 

software, Metrohm, Netherlands). The modified 
glassy carbon (GC) electrodes with 2 mm diameter 
were utilized as working electrode. A saturated 
calomel electrode (SCE) and a platinum wire were 
respectively served as reference and counter 
electrodes. The inductively coupled plasma optical 
emission spectroscopy (ICP-OES) was employed 
to know the content of Pt nanoparticles on the 
surface of modified GC working electrodes. 

RESULTS AND DISCUSSION 
Catalyst characterization

The crystal structure of the synthesized 
catalysts was evaluated by XRD analysis (Fig. 1). 
XRD pattern of NFO shows the pure orthorhombic 
phase (a= 5.441, b=5.5730, c= 7.7) that is similar to 
the literature values (JCPDS No. 08-0168), with the 
main diffraction peak related to the (110) plane at 
d = 2.76 Å. Sharpening of the peaks is related to 
the high crystallinity of NFO catalyst. At Pt/PA-CH 
catalyst, the characteristics of PA peaks are similar 
to the XRD pattern of normal PA [58]. The diffraction 
peaks at 14.6˚, 27.96˚, and 31.68˚ are related to 
the (010), (111) and (022) planes of PA [59-62]. 
The diffraction peaks of Pt at 40.36˚, 45.36˚ and 
67.36˚ are related to the (111), (200), and (220) 
planes of the cubic Pt, respectively [63]. Magnetic 
property of the prepared NFO was investigated by 
AGFM system at room temperature. The hysteresis 
loop of NFO nanocatalyst is illustrated in Fig. 1. 
Coercivity and saturation magnetization of NFO 
were about 100Oe and 1.24 emu g-1, respectively. 
NFO nanoparticles show ferromagnetic behavior.

FTIR spectra of octanoic acid and the prepared 
NFO catalyst after calcination are shown in Fig. 2. 
For octanoic acid, the broad band at 2650-3450 
cm-1 is related to the O-H stretching vibration of 
carboxylic acid. The peak at 1718 cm-1 is attributed 
to the carbonyl group. Two peaks at 1381 and 
1461 cm-1 are related to the bending of CH3 and 
CH2 groups, respectively. The observed peak at 
1220-1330 cm-1 is assigned to the stretching of 
C-O group and the absorption peak at 941 cm-1 
is assigned to the out of plane bending of the 
O-H group [64]. In the FTIR spectrum of NFO 
nanocatalyst, there is a strong absorption band at 
nearly 789 cm-1 relating to the metal-O stretching 
vibration of NFO nanoparticles [65]. 

TEM analysis was used to know the particle size, 
and morphology of the catalysts. Fig. 2 represents 
TEM image of NFO nanocatalyst. As shown, NFO 
nanoparticles have spherical shape. TEM image 
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of Pt/PA catalyst without chitosan is also shown 
in Fig. 2. The microstructure, distribution, and 
morphology of Pt and NFO nanoparticles on PA-CH 
support are shown by TEM images in Fig. 3. For Pt/
PA-CH catalyst, it is observed that Pt nanoparticles 
with the mean particle size of 1.87 nm are dispersed 
uniformly on the matrix of PA-CH support and have 
low agglomeration. Comparing TEM images of Pt/
PA (Fig. 2) and Pt/PA-CH (Fig. 3) demonstrates that 
in the absence of chitosan, more agglomeration 
would happen for Pt nanoparticles and the use of 
chitosan accompanied by PA lead to the better and 
more uniform distribution of Pt nanoparticles. 

As shown for Pt-NFO/PA-CH catalyst in Fig. 3, Pt 
nanoparticles (mean particle size of 2.04 nm) are 
well dispersed on the matrix of PA-CH support and 
also around NFO nanoparticles (mean particle size 
of 19.92 nm) and have very low agglomeration. 
This uniform distribution of Pt nanoparticles is 
attributed to the use of polyaniline and chitosan as 
supporting materials. PA is a conducting polymer 
with NH functional groups in its structure. The 
presence of NH functional groups in PA and the 
amino groups in chitosan structure provides 

positive groups in acidic media. The electrostatic 
attraction between these positive functional 
groups and the negative charged PtCl6

2- (the 
precursor of Pt nanoparticles) causes the uniform 
dispersion of Pt particles. Furthermore, the use 
of CH as supporting material lead to the good 
adherence of the catalyst ink layer on the surface 
of GC electrode. The schematic illustration for 
preparing Pt-NFO/PA-CH nanocatalyst towards 
MOR is shown in Fig. 4.

The N2 adsorption/desorption isotherms were 
measured using a BET instrument (Belsorp mini 
II, BEL Japan Ins.) at the temperature of liquid 
nitrogen. The specific surface area was calculated 
by using the BET (Brunauer–Emmett–Teller) 
model [66] and the pore size distributions were 
determined by the BJH (Barrett–Joyner–Halenda) 
method [67]. 

The N2 adsorption–desorption isotherm and 
pore size distribution of the NdFeO3 nanoparticles 
was illustrated in Fig. 5. The BET surface area, total 
pore volume and pore diameter of NFO calculated 
from the desorption branch of the isotherm using 
the BJH method were 10.642 m2g-1, 0.0301 cm3g-1 

1 

 

  

  
 
 

 

Fig. 1. XRD patterns of the prepared catalysts and room temperature hysteresis loop of NFO nanocatalyst.
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and 22.07 nm, respectively.

Electrocatalytic measurements 
The electrochemical behavior of Pt/PA-CH 

and Pt-NFO/PA-CH nanocatalysts in a 0.5 M H2SO4 
electrolyte was studied through cyclic voltammetry 
(CV) in the potential sweeps from -0.3 V to 1.2 V 
at 100 mV s-1 (Fig. 6A). The amount of platinum 
loading at the surface of GC electrode was 0.049 
mg cm-2. Both CV curves demonstrated hydrogen 
adsorption and hydrogen desorption peaks which 
can be served for calculation the electrochemically 
active surface area (EASH). The EASH value of 
each catalyst can be used to determine its 
electrocatalytic activity [68]. It is determined by 
calculating the charges of hydrogen adsorption 
and desorption peaks after excluding the effect of 
double-layer using the following equation [69]:

EASH =  QH 0.21 × [Pt]⁄                                                                                                                           (1) 
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0.21 mC cm-2 is the charge considered for 
oxidizing single layer of the adsorbed hydrogen 
on platinum [70], [Pt] is the amount of platinum 
loading on GC electrode and QH is the columbic 
charge for hydrogen adsorption/desorption on 
the Pt sites [70]. For Pt/PA-CH and Pt-NFO/PA-CH 
catalysts, QH was determined between -0.271 to 
0.051 V vs. SCE. The EASH value of Pt-NFO/PA-CH 
catalyst (94.46 m2 g-1

Pt) was more than Pt/PA-CH 
catalyst (75.83 m2 g-1

Pt) demonstrating that Pt-NFO/
PA-CH has higher electrocatalytic performance 
than Pt/PA-CH catalyst [71].

The CO poisoning resistance of Pt-NFO/PA-CH 
and Pt/PA-CH catalysts was determined by CO 
stripping voltammetry shown in Fig. 6B [72]. CO 
stripping experiment was performed by purging 
CO gas in H2SO4 0.5 M while the potential was held 
at 0.2 V for 20 min at 100 mV s-1. Afterwards, N2 
gas was bubbled for 20 min to remove the non-
adsorbed CO [73]. 

The CO oxidation peak of Pt-NFO/PA-CH 

2 

 

 

  
 

 

 

 

 

Fig. 2. FTIR spectra of octanoic acid and NFO nanocatalyst, TEM images of NFO nanoparticles and Pt/PA catalyst.
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was observed at 0.527 V whereas, for Pt/PA-CH 
catalyst, it was observed at 0.701 V. The onset 
potential for oxidation of the adsorbed CO at Pt/
PA-CH and Pt-NFO/PA-CH catalysts were 0.574 
V and 0.212 V, respectively. The onset and peak 
potential for oxidation of the adsorbed CO at 
Pt-NFO/PA-CH were much lower than Pt/PA-CH 
indicated that the adsorbed CO at the Pt-NFO/PA-
CH surface is oxidized and removed more easily 
than that of Pt/PA-CH. Pt-NFO/PA-CH had higher 
CO tolerance than Pt/PA-CH [74, 75]. 

The catalytic performance of Pt-NFO/PA-CH, 

Pt/PA-CH and Pt/PA catalysts for methanol electro-
oxidation was studied through the CV curves in 
0.5 M H2SO4 and 1.68 M methanol solution at 100 
mV s-1. As depicted in Fig. 7A, NFO/PA-CH and PA-
CH (not shown) GC modified electrodes showed 
no current peak for methanol electro-oxidation, 
therefore these electrodes had no electrocatalytic 
performance for MOR. 

The CV curves of the synthesized catalysts 
exhibited two remarkable peaks for MOR. The 
peaks in the forward scans (If) were corresponded 
to methanol electro-oxidation and the peaks in 

3 
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Fig. 3. TEM images of Pt/PA-CH and Pt-NFO/PA-CH catalysts.
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the backward scans (Ib) represented the oxidation 
of the adsorbed CO-containing species produced 
during MOR [76]. All the currents in Fig. 7A were 
mass normalized. For Pt-NFO/PA-CH and Pt/
PA-CH catalysts, the anodic MOR peaks were 
located in the forward scan at 0.932 V and 0.766 
V, respectively with the corresponding mass 
current of 15.755 and 5.151 A mg-1

Pt. The second 
MOR peaks for Pt-NFO/PA-CH and Pt/PA-CH were 
observed in the backward scan around 0.622 V 
and 0.461 V, respectively. The electrochemical 
data of MO on the synthesized catalysts was 

summarized in Table 1. Magnitude of the anodic 
mass current indicated the catalytic activity for 
methanol electro-oxidation. As observed in Fig. 
7A and Table 1, there was a great increase in the 
anodic mass current of Pt-NFO/PA-CH compared to 
Pt/PA-CH catalyst, suggesting that Pt-NFO/PA-CH 
has superior electrocatalytic ability for methanol 
electro-oxidation compared to Pt/PA-CH. The 
use of NFO nanoparticles accompanied by Pt 
nanoparticles significantly improved their catalytic 
activity for MOR. Catalytic activity of Pt/PA catalyst 
without using chitosan was also investigated for 
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Fig. 4. The schematic illustration for preparing Pt-NFO/PA-CH nanocatalyst towards MOR.

Fig. 5 N2 adsorption–desorption isotherm and pore size distribution of NFO 
nanoparticles.
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MOR compared to Pt/PA-CH catalyst. As shown 
in Fig. 7A, Pt/PA-CH had a little better catalytic 
activity than Pt/PA. The main advantage of using 
chitosan is improved dispersion of Pt nanoparticles 
and better adherence of the catalyst ink on the 
electrode’s surface. The catalytic activity of Pt-
NFO/PA-CH catalyst was compared with different 
catalysts prepared in the previous works (Table 
2) [4, 76-78]. As shown in Table 2, Pt-NFO/PA-CH 
has higher catalytic activity than other catalysts 
towards MO according to its higher EAS and higher 
anodic mass current. 

The long-term stabilities of Pt-NFO/PA-CH 
and Pt/PA-CH catalysts for MOR were measured 
by chronoamperometry (CA) technique. The CA 
curves were obtained in 0.5 M H2SO4 and 1.68 
M methanol at 0.8 V vs. SCE for 1000 s (Fig. 7B). 
As shown in Fig. 7B, Pt-NFO/PA-CH had better 
catalytic activity than Pt/PA-CH for methanol 
electro-oxidation. Initially, the current of the 
prepared catalysts decreased rapidly. This may be 
related to the reactive intermediates generated 
during methanol electro-oxidation [79]. At the 
initial stage, Pt-NFO/PA-CH had a higher anodic 

6 

 

 

 

 

 

 

Fig. 6. A) CV curves, and B) CO absorption oxidation curves of Pt/PA-CH and Pt-NFO/
PA-CH catalysts in H2SO4 0.5 M solution.
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mass current (6.933 A mg-1
Pt) compared to Pt/PA-

CH (3.690 A mg-1
Pt). After the measured time (1000 

s), Pt-NFO/PA-CH (0.710 A mg-1
Pt) still had higher 

current (approximately 2.8 times) than Pt/PA-CH 
(0.254 A mg-1

Pt) indicating the higher tolerance of 
Pt-NFO/PA-CH to the produced intermediates (for 
example CO) during methanol electro-oxidation 
[80]. This result confirmed the enhanced catalytic 
performance of Pt/NFO/PA-CH compared to Pt/
PA-CH for MOR. 

Furthermore, electrochemical impedance 
spectroscopy (EIS) of the prepared electrodes 
was obtained to determine their behaviors for 

MOR [81]. EIS investigations were performed in 
1.68 M methanol and 0.5 M H2SO4 at open circuit 
potential (OCP) and the frequency range of 1×104 
to 10-2 Hz. The Nyquist plots of Pt/PA-CH and Pt-
NFO/PA-CH catalysts are shown in Fig. 8. As can 
be seen, each Nyquist plot consists two parts of Z’ 
and Z’’ which represent the ohmic and capacitive 
parameters, respectively [82]. As illustrated in Fig. 
8, Pt-NFO/PA-CH catalysts showed a smaller value 
of the semicircle diameter in the high frequency 
region compared to Pt/PA-CH indicating that Pt-
NFO/PA-CH had lower charge transfer resistance 
at the electrode/electrolyte interface and better 

7 

 

 

 

 

 

 

Fig. 7. A) CV curves and B) Chronoamperometry curves of catalysts in 0.5 M H2SO4 and 
1.68 M methanol.
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conductivity than Pt/PA-CH [83]. A more vertical 
straight line at the EIS plot of Pt-NFO/PA-CH than 
that of Pt/PA-CH in the low frequency region 
revealed the improved ions diffusion feature of Pt-
NFO/PA-CH for methanol electro-oxidation [69].

Temperature is an effective factor to get 
information about the reaction rate. To investigate 

the catalytic performance of Pt/PA-CH and Pt-
NFO/PA-CH in different temperatures, cyclic 
voltammetry experiments were performed in 1.68 
M methanol and 0.5 M H2SO4 in the temperature 
range of 28-45 ˚C (Fig. 9). As demonstrated, the 
anodic current densities of the prepared catalysts 
increase with temperature. Perhaps, this effect is 

 

catalyst Ef1 
(V) 

If1 
(A mg-1Pt) 

Eb 
(V) 

Ib 
(A mg-1Pt) 

Pt/PA 0.728 4.331 0.466 4.693 
Pt/PA-CH 0.766 5.151 0.461 4.081 

Pt-NFO/PA-CH 0.932 15.755 0.622 18.121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Electrochemical data of methanol electro-oxidation at the prepared catalysts in 0.5 M H2SO4 
and 1.68 M methanol solution
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Fig. 8. Nyquist plots of Pt/PA-CH and Pt-NFO/PA-CH catalysts in 0.5 M H2SO4 and 1.68 M 
methanol.

 

 

 

 

 

 
Catalysts EAS 

(m2 g-1Pt) 
Ef  

(V) vs. SCE 
jf  

(A mg-1Pt) 
Eb  

(V) vs. SCE 
jb  

(A mg-1Pt) 
ref 

Pt/MV-RGO 24.65 0.63 0.221 0.47 0.225 [77] 
Pt/RGO 8.25 0.63 0.084 0.50 0.071 [77] 

RGO-PDMAEMA-Pt/Ag 
nanoscrolls 

89.1 0.71 0.046  0.57 0.047 
 

[76] 

RGOPDMAEMA- 
Pt/Ag sheets 

69.8 0.71 0.036  0.57 0.042  [76] 

Pt/C 75 0.63 0.145 0.5 0.149 [78] 
Pt/CrN 82 0.65 0.195 0.53 0.200 [78] 

Pt/PVA/CH 5.40 0.668 0.191  0.405 0.118  [4] 
Pt/PVA-CuO-Co3O4/CH 54.56 0.810 3.010 

 
0.512 2.471  [4] 

Pt/PVA-CuO-Co3O4 35.89 0.744 1.597  0.495 1.319  [4] 
Pt/PA-CH 75.83 0.766 5.151  0.461 4.081  This work 

Pt-NFO/PA-CH 94.46 0.932 15.755  0.622 18.121  This work 

 

 

 

 

 

 

 

 

Table 2 Electrochemical data of methanol electro-oxidation at various catalysts.



249J Nanostruct 10(2): 239-257, Spring 2020

S. Khammarnia et al. / Investigation of Catalytic Activity of Pt-NdFeO3 Nanoparticles

due to the increase in charge (ion) transfer rate at 
the interface of electrolyte and electrodes [84]. 
When the temperature increased from 28 to 45 
˚C, jf increased from 123.625 to 296.672 mA cm-2 
at Pt/PA-CH catalyst whereas, for Pt-NFO/PA-CH 
catalyst, jf increased from 594.801 to 922.428 mA 
cm-2. The activation energies (Ea) of the anodic 
peaks of methanol oxidation at Pt/PA-CH and Pt-
NFO/PA-CH catalysts were determined according 
to the Arrhenius relationship (equation 2) and the 
suitable linear fit log j versus T-1 (Fig. 10) [84]:

 

 

I = Ae−Ea RT⁄                                                                                                                                                (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  
In this equation, Ea defines activation energy, 

R is known as gas constant, I and T denote the 

(2)

current at the specific potential and temperature, 
respectively. The activation energies for Pt/PA-
CH and Pt-NFO/PA-CH catalysts were 17.394 and 
9.080 kJ mol-1, respectively. The smaller value of 
activation energy of the anodic peak of MOR at 
Pt-NFO/PA-CH compared to Pt/PA-CH catalyst, 
revealing the faster charge transfer on the Pt-NFO/
PA-CH surface [33, 71].

The catalytic activities of Pt/PA-CH and Pt-NFO/
PA-CH catalysts for methanol electro-oxidation 
are shown at different scan rates (30-190 mVs-

1) in 0.5 M H2SO4 and 1.68 M methanol (Fig. 11). 
Increasing the scan rate resulted in increasing the 
anodic peak current of MOR with a positive shift 
in peak potential. As demonstrated in Fig. 11, 
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Fig. 9. CV curves of A) Pt-NFO/PA-CH and B) Pt/PA-CH catalysts at various 
temperatures of 28, 30, 35, 40, and 45 ˚C in 0.5 M H2SO4 and 1.68 M methanol.
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the anodic peak current densities of the catalysts 
(jf) increase linearly with the square root of scan 
rate (υ0.5), which suggests that diffusion process 
is predominant during MOR [85]. Furthermore, 
the linear relationship between Ef and ln υ at Pt/
PA-CH (R2 = 0.94) and Pt-NFO/PA-CH (R2 = 0.98) 
demonstrate that the kinetics is controlled by the 
surface reactions and indicates that MOR is an 
irreversible-diffusion process [86-88]. 

Fig. 12 represents the performance of Pt-NFO/
PA-CH towards electro-oxidation of methanol with 
different concentrations in 0.5 M H2SO4 solution. 
As demonstrated in Fig. 12, anodic current of MOR 
increases with increase in methanol concentration 

and levels off at methanol concentrations more 
than 1.68 M. This effect is assumed to be occurred by 
saturation of active sites at the electrode’s surface 
[70, 89]. Furthermore, when the concentration of 
methanol increases from 0.08 to 1.9 M, Ef shifts 
towards more positive potentials from 0.659 to 
0.947 V. Perhaps, this effect is observed because 
of the following reason: the poisoning rate of Pt 
nanoparticles increases with increase in methanol 
concentration, thus the adsorbed intermediates at 
the Pt nanoparticles’ surface would be removed at 
more positive potentials [90].

The long-term stabilities of Pt-NFO/PA-CH 
and Pt/PA-CH were studied through multiple CVs 
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Fig. 10. Arrhenius plots for Pt-NFO/PA-CH and Pt/PA-CH catalysts towards methanol 
oxidation.
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tests (100 cycles) shown in Fig. 13. At Pt-NFO/PA-
CH catalyst, jf decreased to 79.66% of its initial 
value after 100 cycles. At Pt/PA-CH catalyst, jf 
decreased to 79.41% of the original value after 
100 cycles. As can be seen, Pt-NFO/PA-CH catalyst 
had a little better cycling stability for methanol 
electro-oxidation compared to Pt/PA-CH. Both 
of the prepared catalysts had good durability 
for methanol oxidation. Pt-NFO/PA-CH catalyst 
revealed much better catalytic performance for 
methanol electro-oxidation compared to Pt/PA-
CH regarding the anodic current density [72, 91].

To study the kinetics of Pt/PA-CH and Pt-NFO/
PA-CH catalysts, Tafel plots were considered using 
potentiodynamic pseudo-steady state polarization 
of 1.68 M CH3OH in 0.5M H2SO4 solution at the scan 
rate of 30 mV s-1 shown in Fig. 14. Splitting of the 
first C-H bond of methanol with the first electron 
transfer is the rate-determining step of MOR [92]. 
The Tafel slopes of Pt/PA-CH and Pt-NFO/PA-CH 

were 249 and 234 mV.dec–1 respectively, indicating 
that methanol dehydrogenation reaction on Pt-
NFO/PA-CH is faster than Pt/PA-CH. 

The kinetic parameters of methanol oxidation 
for the prepared catalysts were calculated from 
the following Tafel equations (3) and (4) [93]:

 

 

 

η = a + b log i                                                                                                                                              (3) 
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η =  − 2.303 RT
nαF log i0 + 2.303 RT

nαF  logi                                                                                                (4)                                                                                     (4)

Where R is the gas constant, T is the 
temperature, i0 is the exchange current density, F 
is the Faraday constant, α is the charge transfer 
coefficient. 

The charge transfer coefficients of Pt/PA-
CH and Pt-NFO/PA-CH were 0.23 and 0.25, 
respectively. The exchange current density for 
Pt/PA-CH and Pt-NFO/PA-CH catalysts was 0.19 
and 0.31, respectively. The higher charge transfer 
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Fig. 11. CV curves of MOR at Pt/PA-CH and Pt-NFO/PA-CH catalysts at different scan rates (30, 60, 90, 100, 130, 
160, and 190 mV s-1) in 1.68 M methanol and 0.5 M H2SO4. The anodic peak current density (jf) vs. square root 

of scan rate (υ0.5), and the anodic peak potential (Ef) vs. lnυ are also shown for the prepared catalysts.
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coefficient, higher exchange current density and 
lower Tafel slope of Pt-NFO/PA-CH catalyst confirm 
its greater catalytic activity than Pt/PA-CH. 

CONCLUSIONS
In this study, a novel Pt-NFO/PA-CH 

nanocatalyst was successfully synthesized and 
characterized. The catalytic activity of this catalyst 
was evaluated for methanol electro-oxidation and 
compared with that of Pt/PA-CH nanocatalyst. High 
catalytic performance of the prepared catalysts 
for methanol oxidation is probably attributed to 
the use of polyaniline and chitosan as support for 

nanoparticles. The use of PA and CH with their 
positive functional groups as catalyst support 
caused the uniform distribution of Pt nanoparticles 
confirmed with TEM images. Pt-NFO/PA-CH 
catalyst exhibited enhanced catalytic performance 
for methanol electro-oxidation compared to Pt/
PA-CH, considering its better antipoisoning effect, 
improved electrochemically active surface area, 
higher long-term stability, better durability and 
higher anodic mass current for methanol oxidation 
than Pt/PA-CH. The use of NFO nanoparticles 
accompanied by Pt nanoparticles significantly 
enhanced their catalytic activity for MOR. Also, 

12 

 

.  

 

 

 

 

Fig. 12. CV curves of MOR at Pt-NFO/PA-CH catalyst in 0.5 M H2SO4 and various con-
centrations of methanol: 0.08, 0.16, 0.24, 0.32, 0.41, 0.48, 0.56, 0.64, 0.72, 0.79, 
0.87, 0.95, 1.03, 1.1, 1.18, 1.25, 1.32, 1.39, 1.47, 1.54, 1.62, 1.68, 1.76, 1.83, 1.9 M.
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Fig. 13. CV curves of Pt/PA-CH and Pt-NFO/PA-CH catalysts during 100 cycles in 1.68 M methanol and 0.5 M 
H2SO4 solution. Anodic current densities of MO at the prepared catalysts are also shown as a function of cycle 

number.

Fig. 14. Tafel plots for methanol oxidation on the prepared catalysts in 0.5 M 
H2SO4 and 1.68 M CH3OH at 25˚C.
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the presence of CH led to the excellent adherence 
of the catalyst ink over the GC working electrode. 
These investigations revealed that Pt-NFO/PA-CH 
can be utilized as an effective catalyst for methanol 
oxidation.
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