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Abstract 
 Piezoelectric nanobeams having circular, rectangular and hexagonal 
cross-sections are synthesized and used in various Nano structures; 
however, piezoelectric nanobeams with hexagonal cross-sections 
have not been studied in detail. In particular, the physical 
mechanisms of the surface effect and the role of surface stress, 
surface elasticity and surface piezoelectricity have not been discussed 
thoroughly. The present study investigated post-buckling behavior of 
piezoelectric nanobeams by examining surface effects. The energy 
method was applied to post-buckling of hexagonal nanobeams and 
the critical buckling voltage and amplitude are derived analytically 
from bulk and surface material properties and geometric factors. 
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1. Introduction 
   Nano beams and Nano plates play important 
roles in sensing and actuation of nano-
electromechanical systems in different fields of 
engineering. Piezoelectric nanobeams are 
promising for a range of applications in 
nanotechnology, such as nanosensors/transducers, 
nano-resonators, diodes and piezoelectric field-
effect transistors [1] . 

Studies on the influence of surface effects on the 
electromechanical behavior of piezoelectric 
elements include that of Chen et al. [2], who 
analyzed Young’s modulus size-dependency in 

nanowires made with ZnO. Wang and Feng [3] 
studied the influence of surface effects on the 
buckling of nanobeams under axial compression. 
Xiang et al. [4] investigated piezoelectricity in 
ZnO nanobeams. Zhao et al. [5] examined the 
piezoelectric properties of nano-belts using a 
piezoresponse force microscope. Gurtin et al. [6] 
developed a model based on surface elasticity and 
residual surface stress using the Young-Laplace 
equation. Lilly and He [7] studied the bending of 
nanowires (NWs) based on the Euler-Bernoulli 
beam model. In recent years, the mechanical 
behavior of nano-elements has been of interest in 
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response to developments in nanotechnology. Yan 
and Jiang [8] presented an analytical model to 
study vibration and buckling of nano-sized beams 
considering surface effects. They [9] investigated 
the influence of surface effects on the 
electromechanical coupling and bending behavior 
of piezoelectric nanobeams. The surface effects 
considered were surface elasticity and surface 
piezoelectricity [10]. 

The present study examined the influence of 
surface stress on post-buckling of NWs with 
hexagonal cross-sections using the energy method 
using an analytical solution for the clamped-
clamped boundary condition. 
 
2. Analytical Formulation 

The current work was conducted on a 
piezoelectric nanobeam with a hexagonal cross-
section [11]. Figure 1 depicts the piezoelectric 
clamped-clamped nanobeam. 
 

 
 

Fig. 1. (A) The hexagonal cross-section with surface 
layer (B) schematic diagram of nanowire   
 

Axial strain ( zz ) at any point on the beam can 

be defined as: 

0 zz y                                                           (1) 

where 0  is the strain component of the mid-plane 

and k is the curvature of the surface caused by 
buckling or bending. The electrical field is 

assumed to exist only in the y direction. Electrical 

field yE  is related to electric potential   as: 

yE
y


 


                                                            

(2) 
The constitutive relations in the bulk 

piezoelectric materials can be defined as: 

 Ezz zz yeE                                                    

(3) 

 y zz yD e kE                                                   

(4) 

where zz  is the axial stress, yD is the 

electrical displacement, and E , e  and k  are the 
elastic, piezoelectric and dielectric constants.  

Huang and Yu [12] used constitutive equations 
for the surface of a beam as: 

0  Es s s
zz zz zz ye E                                       

(5)                                                  
0  s s s

y y zz yD D e k E                                   

(6)    

    where  s
zz  is the surface stress and  s

yD is 

the surface electric displacement, Es , se  and sk  
are the surface elastic, surface piezoelectric and 

surface dielectric constants, 0
zz  is the surface 

stress and 0
yD  is the surface electric displacement. 

In the absence of free electrical charges, the 
dielectric governing equation is:  

0yD
y





                                                             (7) 
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Using
3 0

2
a

 
   
 

,
3 0

2
a

 
   
 

 and 

3
2

a V
 

  
 

 in Equations (2), (4) and (7) gives: 

  2

2 3
e Vy y y Constant

k a
                    (8) 

The electrical potential of the rectangular cross-
section was applied to the model. Using Equation 
(2), the electrical field can be expressed as: 

3y
V eE y

ka


                                             (9) 

Using Equation (9), constitutive Equations (3), 
(4), (5) and (6) for the piezoelectric nanobeam can 
be rewritten as: 

2

0 E E 1
EE 3zz

eV e y
ka

  
  

     
   

         (10) 

   

0 3y
kVD e
a

                                               (11)     

0
0  E 1 E

E E 3

s s
s s s
zz zz s

ee e Vy
k a

   
   

       
   

                                                                              (12) 

0
0 ε 3

s
s s

y y
k VD D e
a

                                (13)      

For hexagonal cross-section, bending rigidity 
(EI) and tensile rigidity can be derived as: 

 
2

4

3

5 3 E 1 ...
16 E

5... E 1
2 E

eff

s
s

eEI a
k

eea
k

 
   

 
 

  
 

 

(14)      

  2

0

0

3 3 E 1 ...
2 E 3

... 6 E 1
E 3

eff

s
s

s

eVEA a
a

e Va
a





 
    

 
 

   
 

(15) 

 
It was assumed that the top and bottom surfaces 

have residual surface tension 0
zz . The Laplace-

Young equation [13] gives the distributed loading 
on the two surfaces as: 

  0
,2 zz zzp z a w                                         (16)        

   where ,zzw is the second derivation of beam 

deflection with respect to z (Figure 1). The energy 
method was used to study the post-buckling 
behavior of the piezoelectric nanobeam. Elastic 
nonlinear von Karman beam assumptions were 
applied in this method. The total energy is [14]: 

total m b e rU U U U U                                    

(18) 

where mU  is the membrane energy, bU  is the 

bending energy, eU  is the negative electric energy 

and rU  is the energy related to surface residual 

energy. 
The clamped-clamped boundary condition was 

assumed, i.e., ,0,  0zw w   at 0,z L . The 

boundary conditions are satisfied by the following 
beam deflection: 

21 cosw Amp z
L
        

                               

(19) 
where amplitude (Amp) can be obtained by 

energy minimization and w is the out-of-plane 
displacement of the nanobeam. The displacement-
strain relation is: 

0
1
2

zdu dw
dz dz

     
 

                                           

(20) 

Membrane force zzN  in the beam is:  
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  0

2
0

0

3 3 E ...
2 E 3

... 6 E
E 3

zz eff

zz

s
s

s

N EA

eVN a
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e Va
a









    
 

 
  

 

                   (21) 

Force equilibrium 0 zzdN
dz

 requires the 

membrane force to be constant; consequently, the 
membrane strain is constant. 

The substitution of Equation (19) into Equation 
(20) results in the in-plane 

displacement:
2 4sin

2z
Ampu z

L L
    

 
                                

(22) 
Substituting Equation (22) and (19) into 

Equation (20) results in:  
2

2
0 2

2 2Amp cos z
L L

 
    

 
                        (23) 

The membrane energy in the beam can be 
obtained as: 

  2
0

0

4 4 2

3

2 2

1
2

3 3 3 E 6 E ...
4 2

3 6...
2 2 3

L

m eff

s

s

U EA dz

Amp a a
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Amp aeV e V
L
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



 

 
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            (24) 

The bending energy becomes:  

 
2

2
2

0

2
4

2 4

3

1 ( )
2

5 3 E 1 ...
16 E

4  
5... E 1
2 E

L

b eff

s
s

wU EI dz
z

ea
k Amp

Leea
k




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           



     (25) 

Negative electrical energy in the beam is a 
response to the residual surface electrical 

displacement, surface module and surface electric 
displacement and can be obtained as: 

 

 asin 60

0 asin 60

2 2 2

2

(3 3 )
6

L
y y

e

D E dydz
U a

V Amp ae kV L
L





 
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 
                  (26)  

Surface residual stress energy rU  is: 

   
0

0 2 2

1
2

2

L

r

zz

U p z w z dz

a Amp
L

 

 




                           (27) 

Total energy totalU  is the sum of the bending, 

membrane, electrical and surface residual stress 

energies. Minimization of totalU with respect to 

Amp gives: 

 
 

3 4 3

3 3 4 3

s

s

aEk aE ELAmp
aEk aE E

X


          
 

 

                                                         (28-a)  

Where X is expressed as: 
2 2 4 2 3

2 4 2 2 3

0

(15 40 3

15 40 3

5 3 8 3 12

s

s s

s
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X E a k EE a k

E a e E a ee
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 
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
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

       

                                                                 (28-b)                                        
Critical voltage can then be from the amplitude 

as: 

 
 

 

2 2 3 2 2 2 3 2

2 2 0

15 40 3 15

5 3 12

a(40 3 8 3
5 3 12

)
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s s
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s

a E a k EE a k E a e
V

Ek ae e

E a ee E ak
Ek ae e

  

 

 
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






                                                                           (29)  
Neglecting the surface effect and 

substituting 0 0zz  , E 0s   and 0se   into 
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Equations (28) and (29) normalizes V and Amp. 
Amp and V without surface effects becomes:   

 2 4 2

0

3k(15Eπ a kE e 5 3 EVaek)  
A

9πEka

L   
                

                                                                        (30)  

 3 2 2
0

3
cr

a Ek e
V

ek
 

                         (31)       

                      
3. Results and discussion  
   The present study investigated the influence of 
surface effects on the post-buckling behavior of 
PZT hexagonal and rectangular nanobeams. The 
bulk properties of PZT were assumed to be 

25.02 /e C m  , 95 E GPa , and 
( 9)3.3 10 /K F m  [10]. The surface 

properties were 0 1 /zz N m  , 7.56 /
s

E N m


  

and 8  3 10 /
s

e C m    [8]. The length-to-
thickness ratio of the piezoelectric NWs was set at 
40.  

The hexagonal cross-section was considered to 
be surrounded by a rectangle with a height of 

2   .
3

a sin     
 

 Equation (32) was used to 

normalize the critical voltage. The normalized 
critical voltage ( / 0Vcr Vcr ) versus the thickness 
h of the rectangular and side a of the hexagonal 
piezoelectric nanowires are shown in figures 2 and 
3.  

 
 

Fig. 2. The normalized critical voltage with surface 
elasticity versus the thickness h and side a.  

To study surface elasticity,   0
s

e  , 0 0zz   

and 0sE   were assumed. To show the surface 
piezoelectricity, the surface properties were 

assumed to be   0
s

e  , 0 0zz  , and 0sE  . The 

value of h and a were assumed 10 nm to 100 nm. 
 

 
Fig. 3. The normalized critical voltage with surface 
piezoelectricity versus the thickness h and side a. 
 

 

Figures 2 and 3 indicate that, when a and h are 
greater than 100 nm, the normalized critical 
voltage tends to remain constant. Figure 2 shows 
that increasing h and a decreased the normalized 
critical voltage in both cross-sections. Figure 3 
shows that the normalized critical voltage 
increased as h and a increased. 
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The assumptions made in the present study 
correspond to those of previous research; 
modifications in the cross-section were made to 
provide reasonable comparison with previous 
work. The cross-section was assumed to be 
rectangular and the hexagonal cross-section was 
assumed to be surrounded by a rectangle. To 
validate the proposed model, the results are 
compared with results from Li et al. [14] (Table 1). 
The table shows the normalized amplitude versus 
V/Vcr with and without surface effect. As shown, 
the results are remarkably similar. 

 
Table 1. Normalized amplitude versus V/Vcr 

V/Vcr 

A/A0 

Rectangular 
Li et al. [14] 

 

Hexagonal 
[Present] 

 

5 

With surface 
effect 

2.46559 2.07754 

Without 
surface effect 

2.23607 2.0000 

6 

With surface 
effect 

2.70443 2.33576 

Without 
surface effect 

2.44949 2.23607 

7 

With surface 
effect 

2.9238 2.56815 

Without 
surface effect 

2.64575 2.44949 

8 

With surface 
effect 

3.12787 2.78118 

Without 
surface effect 

2.82843 2.64575 

9 

With surface 
effect 

3.31939 2.97902 

Without 
surface effect 

3.00000 2.82843 

   The cross-section was assumed to be circular and 
the hexagonal cross-section was assumed to be 
surrounded by a circular. To validate the proposed 
model, the results are compared with results from 
Wang et al. [3] (Table 2). 

 
4. Conclusion  
The piezoelectric response of piezoelectric 
nanobeams is a topic of recent research where 
continuum piezoelectric theory is efficiently used 
as a cost effective technique. The present study 
was an analytical approach to study post-buckling 
of piezoelectric hexagonal nanobeams caused by 
an electrical field considering surface effects and 
critical voltage. 
 
 
Table 2. The critical compressive load of axial buckling 
of nanowire 

Pcr/Pcr0 L/D=20 

 Hexagonal  
[Present] 

Circular 
Wang et al. [3] D=2a 

80 1.17 1.96 
100 1.14 1.77 
120 1.11 1.64 
140 1.10 1.55 
 160 1.08 1.48 
180 1.07 1.43 
200 1.07 1.38 

 
The results showed that surface effects should 

be considered when the beam thickness decreases 
to nano-size. The model was used to investigate the 
surface effect on critical buckling voltage and its 
dependence on the geometric size of the 
piezoelectric nanobeams. The proposed approach 
can be a theoretical basis for the accurate design of 
piezoelectric nanostructures in future studies. 
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