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Abstract 
Electro-thermo-elastic stress analysis of piezoelectric polymeric 
thick-walled cylinder reinforced by boronnitride nanotubes (BNNTs) 
subjected to electro-thermo-mechanical fields is presented in this 
article. The electro-thermo-elastic properties of piezoelectric fiber 
reinforced composite (PEFRC) was studied by a modified XY 
micromechanical model capable of exhibiting full coupling relation 
between electric, thermal and elastic fields. Assuming the basic 
relation for the axisymmetric deformation of a thick-wall cylinder 
subjected to uniform internal and external pressures, an axial 
electrical load, a temperature change T∆  between inner and outer 
radius are derived. The stress results suggest that increasing BNNTs 
content in longitudinal direction reduces the effective stress. Also, 
displacement along radial direction indicates an optimum content of 
5% BNNT for this. Furthermore, at normal working conditions, the 
influence of thermal and mechanical fields are much higher than the 
electric one on the effective stress; hence, this smart structure is best 
suited for applications as sensors than actuators. 
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1. Introduction 
Electro-elastic materials are known to exhibit 

electromechanical coupling characteristics. They 
experience mechanical deformations when placed 
in an electric field, and become electrically 
polarized under mechanical loads [1]. Lately, smart 
composites, including piezoelectric composites 

under electro-thermo-mechanical fields, have been 
studied for extensive applications in power 
generation, sensors, actuators, ultrasonic 
transducer,aircraft and space platforms, automobile 
industries, offshore and submarine structures, 
chemical vessels and civil engineering structures 
[2-6]. These structures can be simplified to an 
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orthotropic hollow cylinder, and exposed to a 
variety of temperature fields in various 
environments. Understanding mechanical behavior 
of these composites is prerequisite in allocating 
their appropriate applications. Recently, nano sized 
tubes such as carbon nanotubes (CNTs) and 
BNNTshave been used as reinforcement in 
composite structures with the latter having higher 
thermal conductivity, better oxidation resistance at 
higher temperatures, and superior mechanical 
properties [7]. 

In 1969, Kawai [8] discovered a significant 
piezoelectric effect in polyvinylidene fluoride 
(PVDF) and considering its excellent mechanical 
properties while subjected to temperature 
continuously, PVDF has since been extensively 
studied [9, 10].Bent and Hagood[11] suggested 
first the use of piezoelectric composite actuators 
for structural applications. Concept and model of a 
piezoelectric structural fiber for multifunctional 
composites was investigated by Lin and 
Sodano[12]. A semi-analytical method for 
analyzing prismatic non-homogeneous 
piezoelectric cylinders with arbitrary cross-
sectional geometry was presented by Liu and 
Taciroglu [13]. Using a general stress analysis, 
Sayman [14] developed a model for thick or thin 
multi-layered composite cylinders under 
hydrothermal loadings and solved it for plane-
strain, open and closed ends cases. Wang and 
Zhong [15] derived an exact solution for a two-
dimensional problem of an infinitely longcircular 
tube or bar of cylindrically anisotropic magneto-
electro-elastic material under pressure load and 
applied the Stroh formalism for a cylindrical 
coordinate system. In another work, [16]  
investigated a finitely long laminated orthotropic 
circular cylindrical shell under pressure load and a 
uniform temperature change and applied power 

series together with Fourier series expansion 
methods.A three-phase cylindrical model was also 
used by Tong et al.[17]to analyze a fiber composite 
subjected to in-plane mechanical loads under the 
coupling effects of thermo, electric, magnetic and 
elastic fields. Frankland et al.[18]studied stress–
strain curves of a polyethylene–single walled CNT 
(SWCNT) composite prepared by molecular 
dynamic simulations.Ding et al. [19] proposed an 
analytical method to solve the axisymmetric plane 
strain piezo-thermo-elastic dynamic problems of a 
special non-homogeneous pyroelectric hollow 
cylinder subjected to arbitrary axisymmetric 
thermal loads. Dai and Wang [20]presented an 
exact solution for thermo-electro-elastic transient 
response in piezoelectric hollowstructures 
subjected to arbitrary thermal, radial and electric 
shock loads.  

In this work, the stress analysis of a 
piezoelectric polymeric thick-walled cylinder(e.g. 
PVDF) reinforced by another piezoelectric material 
such as BNNTs and subjected to electro-thermo-
elastic loading is studied. Overall properties of the 
piezoelectric fiber reinforced composite (PEFRC) 
material are evaluated as suggested by Tan & Tong 
[21] using an XY micro-mechanic model. 
Employing equilibrium equations in the cylindrical 
coordinate for a thick-walled cylinder, and overall 
properties applied in the stress-strain-temperature-
electric field relation, a differential equation for 
radial displacement is derived, which is then 
solved in exact form for the specified boundary 
conditions. Replacing the obtained radial 
displacement in the stress-strain relation yields 
radial, longitudinal and circumferential stresses, 
which are plotted for various boundary conditions, 
against temperature difference, potential difference 
and cylinder radius. 
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2. Micro-mechanic model 
As mentioned above the overall properties of the 

PEFRC is evaluated by a micro-mechanic XY 
model. A representative volume element (RVE) 
with square cross-sectional is selected for a PEFRC 
and a circular one for the fiber is assumed (see 
Fig.1). The influence of the piezoelectric fiber 
volume fraction on the effective constants for 
PEFRC materials using the above mentioned 
model was investigated and the results complied 
well with those found with Mori-Tanaka mean 
field approach. The assumptions made for the XY 
model include:  

 The composite material is perfectly bonded, its 
constituents are assumed to be linear homogeneous 
and orthotropic. 

 The applied electric and thermal fields to the 
PEFRC unit cell are uniform. 

Iso-stress, iso-electric displacement, are 
assumed to exist across the planes which are in 
series with respect to the loading direction. Iso-
strain and iso-electric field are assumed across the 
planes which are in parallel with respect to the 
loading direction [6].  

 Thermal field within a PEFRC unit cell is 
uniform. 

The closed-form formulas for the effective 
electro-thermo-elastic constants of an X PEFRC 
strip may be expressed as equations 1.1 to 1.11 
described below 
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where ijC , mne and pλ , are elastic stiffness 

constants, piezoelectric constants and thermal 
expansion, respectively. The constant ρ  is 

baba yyxx // = where ax , bx and ay , by are 

dimensions of fiber and matrix unit cells, 
respectively, as illustrated in Fig. 1. For the Y 
PEFRC model, the corresponding equations can be 
obtained by simply exchanging the subscripts 1 
with 2 in the above Eqs. (1.1-1.10). Hence, the 
effective constants of XY model was obtained by 
placing the effective constitutive coefficients of X 
model into the effective fiber coefficients of Y 
model. The resulting formulations are presented in 
Eqs. (1.12- 1.23) below which represent the 
mechanical properties for the defined RVE: 
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Fig. 1. Schematics of representative volume element. 
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3. Fundamental relations 

Fig. 2 demonstrates a thick-walled cylinder, 
subjected to uniform internal and external 
pressures ( iP and oP , respectively), and a radial 

temperature change T∆ , in an axial electrical field. 
The temperature change T∆  is a function of the 
radial coordinate r only and hence, cylinder 
deformation is axially symmetric. Furthermore, the 
deformations happen at a cross section sufficiently 
far removed from the junction of the cylinder and 
its end caps, so that it is practically independent of 
the axial coordinate z as suggested by Boresi et al. 
[22].  

 

 
Fig. 2. A closed cylinder with internal pressure, external 
pressure, radial temperature and axial electric fields. 
 
3.1. Heat Conduction Analysis 

Steady-state temperature distribution in a 
homogeneous body in the absence of any heat 
source may be presented by the Fourier’s heat 
equation as 

02 =∇ T  (2)

For symmetric thermal conduction, the heat 
equation in a cylindrical coordinate ( zr ,,θ ) can be 

written as 

01
2

2
=

∂
∂

+
∂
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r
T

rr
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which could be solved in the following form 
)ln(21 rkkTr +=  (4)

where 1k  , 2k  are integration constants. The 

boundary conditions iTT = when irr =  , and 

oTT = when orr =  allows 1k  and 2k  to be 

determined as  
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3.2. Governing Equations  

In thick-walled cylinder with end caps there are 
only three stress components of rσ , θσ  and zσ  

(radial, circumferential and axial stresses, 
respectively) all of which are function of radius. 
Ignoring body force component, the equilibrium 
equation in radial direction becomes [22] 
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The electrical equilibrium equation is however 
[1]  
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where rD , θD  and zD  are component of radial, 

circumferential and longitudinal electric 
displacement, respectively.  

The composite material of the cylinder is 
assumed to be orthotropic and linearly elastic. 
Therefore, the stress-strain-temperature-electric 
field relations may be given as [1] 
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and 
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where rλ , θλ  , zλ  may also be expressed as 

zrr CCC αααλ θ 131211 ++=  
zr CCC αααλ θθ 232221 ++=  
.333231 zrz CCC αααλ θ ++=  

(10)

whereε and α correspond to strain and thermal 
expansion, respectively, and subscript r , θ  and z
denote respectively the radial, circumferential and 
longitudinal components. The strain-displacement 
relations are therefore 

r
ur
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(11) 

where ),( zruu rr =  and ),( zruu zz = represents 

displacement components in the r and z direction, 
respectively [21]. It should be noted that 33∈ and 

zE  represent dielectric constant and electric field 

in longitudinal direction, respectively and  

z
Ez ∂

∂
−=

φ . (12) 

Since ru and zu  do not depend much on z at a 

cross section far removed from the end, the shear 
strain components become zero due to radial 
symmetry, in which case zε  could be assumed 

constant, therefore 

.a
z

uz
z =

∂
∂

=ε  (13)

4. AnalyticalSolution 

In order to solve this problem, the exact solution 
is adopted. The electric field is applied in z 
direction. However, considering Eq. (9), rD and 

θD are zero, therefore Eq. (7) reduces to  

0=
∂
∂

z
Dz

 
(14)

Considering zD component in Eq.(9), and 

Eq.(13), the electrical equilibrium Eq.(14) may be 
written as the following differential equation 

02

2
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∈
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zφ

 
(15)

which could be solved by multiple integration 
with respect to z into the following format 

βαφ += zz  (16)

where α and β are integral constants to be 
evaluated considering the two boundary conditions 
below on a thick-walled piezoelectric cylinder 
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The governing differential equation for the 
problem can now be obtained by substituting Eqs. 
(8), (10), (11), (13) and (16), into Eq. (6)  
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where Q , P , k  , N , M  are constants, defined 

as 
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)( 21 kMkNP r ×++= λ  
)( 2MkQ =  

The governing Eq. (19) is the Cauchy-Euler 
non-homogeneous differential equation whose 
solution is  

,
ln
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 (21)

where 1C  and 2C  are constants which could be 

obtained from boundary condition associated with 
internal and external pressure stresses explained 
below. 1A , 2A , 3A  and 4A are constants defined 

as 
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Substituting Eq. (21) into Eq. (11) and 
substituting the resulting equation into the first row 
of Eq. (8), yields the expression for radial stress (

rσ ) as  
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where the following constants could be defined 
as 
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In order to find 1C  and 2C  in Eq. (23) above, 

the following pressure boundary conditions on the 
inner and outer surfaces of the cylinder are 
considered 
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Replacing these in the radial stress Eq. (23) 
gives 
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(27)  

As can be seen 1C  and 2C  are defined in term 

of another constant a  which need be determined 
considering another boundary condition, i.e. the 
equation for overall equilibrium forces along the 
longitudinal axial direction. This equation is 
obtained by balancing the axial electrical and 
mechanical forces involved and may be written as 

)()()(

2

2
00

222
033

0

rPrPrre

drr

iii

r

r z
i

−×+−×××

=×××∫
ππα

πσ
 (28) 



 
 

   120 
 

A. Gorbanpour Arani et al./ JNS 2 (2012) 113-124 
 

It is worth noting that the temperature change 
T∆ does not appear in Eq. (28). This is because the 

effects of temperature are self-equilibrating i.e. the 
thermal loads on the cylinder surface in 
longitudinal direction balances out each other and 
the overall thermal load becomes zero. Also, the 
electric field is considered as an axial load here 
that is applied to the cylinder closed ends. Eq. (28) 
may be one of the major contributions of this 
study, as it is perhaps the first time electric field  is 
considered in this developed and solved governing 
equation in the form of an applied axial load for a 
three dimensional geometry. Other contributions of 
this paper include using the XY micromechanical 
model to evaluate the overall physical 
characteristics of the composite, which enabled us 
to compute both the overall piezoelectric and 
thermal constants of the composite on top of other 
mechanical properties associated with the problem. 
Assuming orthotropic matrix meant we had to 
choose the more complex XY model to solve the 
problem. 

 
5. Numerical Results and discussion 

At this point, numerical results are obtained for 
circumferential, longitudinal and effective stresses 
in a thick-walled composite cylinder made from 
PVDF and reinforced by DWBNNTs subjected to 
internal and external pressures, axial electric field 
and radial thermal field. Table 1 presents physical 
characteristics of both the orthotropic PVDF 
matrix and DWBNNTs reinforcement fibers of the 
smart composite used in this study [7] and [23]. 

The cylinder considered for this study is 

assumed to have inner radius 61020 −× m, outer 

radius 61023 −× m , length 610100 −× m. Internal 
and external temperatures are 30ºC and 60ºC, 

respectively. Applied voltage is 4
0 101×=φ volt. 

Internal and external pressures are assumed to be 

pa610100×−  and zero, respectively. All 

quantities of stresses, displacements, temperatures 
and voltages have become dimensionless with 
respect to PVDF yield stress, σy, (σy=54 GPa), 
outer radius (ro), internal temperature ( iT ), and

4101×=Lφ volt, respectively, as indicated in Eq. 

(29) below  
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(29)       

Table 1. Physical characteristics 

Properties BNNTs PVDF 

11C  2.77 Tpa 10.64 Gpa 

12C  1.427 Tpa 1.92 Gpa 

13C  1.427 Tpa 2.19 Gpa 

22C  2.77 Tpa 23.6 Gpa 

23C  1.427 Tpa 3.98 Gpa 

33C  2.77 Tpa 238.24 Gpa 

33e 0 -0.13 

23e 0 -0.145 

13e 0.95 -0.276 

rα 0.6×10-6 7.1×10-5 

θ
α 0.6×10-6 7.1×10-5 

zα 1.2×10-6 7.1×10-5 

 
Fig. 3 shows the graph of dimensionless radial 

displacement, Ur, against cylinder radius, R, for 
various DWBNNT contents (ρ). Addition of 
DWBNNT increases cylinder stiffness 
considerably and reduces the radial displacement. 
The slope in this diagram indicates that the 
cylinder radial strain (εr), is maximum at %0=ρ , 

and almost zero for all other ρ's. This is expected 
as small addition of DWBNNTs has reduced 
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considerably εr. The improvement in reduction of 
radial displacement due to incremental addition of 
ρ is more significant with the smallest increase 
taking place at %5=ρ , leading to largest drop in 

radial displacement indicating that possibly 5% is 
the optimum DWBNNT content for the cylinder 
investigated here.  

 

 
Fig. 3. Dimensionless radial displacement versus the 
radius of the smart composite cylinder for different 
content of DWBNNT. 
 

 
Fig. 4. Dimensionless circumferential stress versus the 
radius of the smart composite cylinder for different 
content of DWBNNT. 
 

Figs. 4, 5 and 6 illustrate the dimensionless 
circumferential stress, axial stress and effective 
stress against the cylinder radius for different ρ's. 
As can be seen, the maximum circumferential 
stress occurs at the internal radius of the cylinder 

(0.87), and the maximum axial stress occurs at the 
external radius. Effective stress obtained on the 
basis of von Mises indicates that it is maximum at 
both internal and external radii of the cylinder. As 
ρ is increased from 0 to 30%, the maximum 
circumferential, axial and effective stresses are 
reduced to the extent that the effective stress is 
reduced by almost 75%. The same as Fig. 3, the 
significant incremental improvement in reduced 
circumferential stress, occurs at %5=ρ , indicating 

this value to be a possible optimum for crack 
resistance. It is also interesting to note that axial 
stress, zσ , has become a function of the radius 

simply due to temperature difference across the 
internal and external radii, otherwise zσ  would 

have been a fixed value.  
 

 
Fig. 5. Dimensionless axial stress versus the radius of 
the smart composite cylinder for different content of 
DWBNNT. 

 
Fig. 6. Dimensionless effective stress (based on von 
Mises criterion) versus the radius of the smart 
composite cylinder for different content of DWBNNT. 
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Fig. 7. Dimensionless radial displacement versus the 
radius of the smart composite cylinder for different 
voltages. 

 
Fig. 8. Dimensionless circumferential stress versus the 
radius of the smart composite cylinder for different 
voltages. 

 
Fig. 9. Dimensionless axial stress versus the radius of 
the smart composite cylinder for different voltages. 
 

 
Fig. 10. Dimensionless effective stress versus the 

radius of the smart composite cylinder for different 
voltages. 

Figs. 7, 8, 9 and 10 illustrate the effect of 
electric field on the Ur, Σθ, Σz and Σe along the 
radius of the cylinder at %5=ρ and voltages of -

10,000, 0 and +10,000 volt. As can be seen, the 
effect of electric field in general is insignificant. 
Nevertheless, it has caused more displacement at 
the outer radius of the cylinder and 
positive/negative voltages have led to 
positive/negative displacements, respectively. 
Maximum stresses occur at the internal radius of 
the cylinder at –negative voltage.  

Considering the importance of temperature 
effects on the polymeric composite, Fig. 11 
demonstrates the graphs of dimensionless radial 
displacement, Ur, versus r for three different 
internal temperatures, 30ºC, 45ºC and 60ºC, while 
the external temperature remains 30ºC.  Maximum 
displacement occurs at the internal radius of the 
cylinder and increasing temperature causes 
increase in Ur. 

Figs. 12, 13 and 14 illustrates the variations of 
Σθ, Σz and Σe along r for various internal 
temperatures of Ti =30ºC, 45ºC and 60ºC, while 
the external temperature To is kept constant at 
30ºC. Maximum Σθ occurs at 30ºC at the internal 
radius of the cylinder and increase in the Ti leads 
to Σθ reduction. As can be seen in Fig. 13, in the 
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absence of temperature gradient between the inner 
and outer radii of the cylinder, (i.e. Ti = To 
=30ºC), the Σz is independent of R. Increase in Ti 
however, reduces Σz to a minimum at inner radius 
and increases Σz to a maximum at outer radius of 
the cylinder, which is justify able due to the self 
equilibrating nature of temperature field. This 
behaviour of the Σz however, indicate validation of 
the governing equations developed including 
Eq.(28).  The effective stress (Fig. 14) at various Ti 
illustrate that Σe is maximum in the internal radius 
and is highest as Ti increases at both inner and 
outer radii of the smart composite cylinder. 

 
Fig. 11. Dimensionless radial displacement versus the 
radius of the smart composite cylinder for different 
internal temperatures, with external temperature at 
30ºC. 

 Fig. 12. Dimensionless circumferential stress versus 
the radius of the smart composite cylinder for different 
internal temperatures, with external temperature at 
30ºC. 

 
Fig. 13. Dimensionless axial stress versus the radius of 
the smart composite cylinder for different internal 
temperatures, with external temperature at 30ºC. 

 
Fig. 14. Dimensionless effective stress versus the 
radius of the smart composite cylinder for different 
internal temperatures, with external temperature at 
30ºC. 

 
6. Conclusion 

In this article, displacement, and circumferential, 
axial and effective stresses of a thick-walled smart 
composite cylinder with end-caps, made from 
piezoelectric materials (PVDF reinforced by 
DWBNNT's) and subjected to mechanical, 
electrical and thermal fields are studied. Apart 
from the piezoelectric nature of the materials used 
and the associated model for evaluating the overall 
mechanical characteristics, the contribution of the 
paper include consideration of 3-dimensional 
structural analysis and orthotropic composite 
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matrix. The results suggest that increasing 
DWBNNTs content reduces stresses associated 
with mechanical, thermal and electrical fields, in 
descending order. Also, at normal working 
conditions, the influence of thermal and 
mechanical fields are much higher than the electric 
one on the effective stress; hence, this smart 
structure is best suited for applications as sensors 
than actuators.  
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