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This study deals with adsorption of a common non-steroidal anti-
inflammatory drug (NSAID) i.e., diclofenac sodium (DS) using a 
carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide) (CMC-
g-P(AAc-AAm)) nano-hydrogel. The nano-hydrogel was prepared 
by free-radical polymerization method and characterized by different 
characterization techniques including Fourier Transform Infrared 
Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray 
Diffraction (XRD) techniques. Adsorption of DS drug was investigated 
at its variable concentrations and temperature values. The analysis of 
characterization study highlights the presence of porosity and heterogenous 
surface of prepared nano-hydrogel. Ionic functional groups of nano-
hydrogel i.e., -O-H, -N-H and -C=O were mainly involved in adsorption 
process. Isotherm models i.e., Langmuir, Freundlich, and Temkin models 
were studied that showed the fitness of data to Freundlich model with 
maximum adsorption capacity (qe (mg/g)) of 1.872 mg/g. Adsorption was 
also studied thermodynamically that revealed the non-spontaneous and 
exothermic nature of the process. Overall, study suggest that the prepared 
nano-hydrogel has the potential to adsorb DS drug from aqueous solution 
with higher efficiency and removal percentage.   

INTRODUCTION
In today’s world, pharmaceutically active 

compounds (PhACs) i.e., NSAIDs, antibiotics, 
antidepressants, and hormones appeared as 
an emerging water pollutant [1] that are not 
fully metabolized and get discharged into water. 
Inappropriate disposal of unused medications 
and inefficient working of wastewater treatment 

plants (WWTPs) for PhACs removal further 
aggravates the issue [2]. These compounds are 
responsible for severe health problems and 
environmental pollution. Among all PhACs, 
diclofenac sodium (DS) is one of the common non-
steroidal anti-inflammatory drugs (NSAID) with 
numerous applications all over the world [3, 4]. 
This drug contains two aromatic rings and different 
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functional groups (as phenylacetic, chlorine, 
secondary amino) in its structure [5]. It finds 
widespread uses as a cyclooxygenase inhibitor 
owing to its anti-inflammatory, analgesic, as well 
as antipyretic characteristics [6]. The remarkable 
proportion of this drug, however, get discharged 
into the environment via urine and feces. Owing 
to its resistant nature toward degradation, this 
drug stays for a longer time in water posing serious 
harms to aquatic life mainly fishes by damaging 
their kidney, gills, as well as their endocrine system. 
Furthermore, this is responsible for inducing 
oxidative stress and lowering the testosterone 
levels in aquatic organisms [7-15]. For mitigating 
the problems caused by DS drug pollution, there 
is a need for developing some effective water 
treatment methods aiming to remove DS drug 
from wastewater and industrial effluents to 
reduce its associated health risks both to humans 
and environment [8, 15-17]. 

Different procedures for treating polluted water 
have been developed as advanced oxidation, 
membrane filtration, membrane-sorption hybrids 
and adsorption. Among these techniques, 
adsorption process is widely employed method 
due to its low energy consumption, easy operation, 
and high effectiveness [18-30]. In adsorption 
process, selecting the most appropriate adsorbent 
is the crucial step and numerous adsorbents have 
been developed till date. Hydrogels are widely used 
adsorbents owing to their hydrophilic nature, large 
surface area available for adsorption and diversity 
of functional groups in its structure [31, 32]. These 
materials are biocompatible and biodegradable in 
nature [33-35]. Sodium carboxymethyl cellulose 
(CMC) is a polymer that finds extensive uses in 
different fields mainly due to its unique chemical, 
physical, and biological characteristics. Presence 
of amine (-NH2) and carboxyl (-COOH) functional 
groups in CMC make it pH sensitive as its swelling is 
more in basic solutions rather than in acidic ones. 
This property of CMC make it effective adsorbing 
material for controlled drug delivery systems [36]. 

However, to further improve the adsorbing 
potential of CMC, different polymers are grafted 
in it. Poly acrylic acid (PAAc) and polyacrylamide 
(PAAm) possess high efficiency for adsorbing 
variety of pollutants [37] mainly due to presence 
of ionic functional groups in their structure [38, 
39]. This study deals with use of carboxymethyl 
cellulose-g-poly (acrylic acid-co-acrylamide) i.e., 
CMC-g-P(AAc-AAm) nano-hydrogel for adsorptive 

removal of DS drug from water. The adsorbent’s 
synthesis was done by method of free radical 
polymerization and further analyzed via FTIR, 
SEM and XRD. Adsorption of drug was studied at 
variable temperatures and concentrations. Data 
from adsorption study was applied to Langmuir, 
Freundlich and Temkin models for describing 
the adsorption mechanism. The thermodynamic 
behaviour of DS drug adsorption on prepared 
nano-hydrogel was also analyzed by applying Van’t 
Hoff plot. Findings revealed adsorptive potential 
of prepared adsorbent toward DS drug adsorption. 

MATERIALS AND METHODS
Reagents and chemicals 

The reagents used in current study were sodium 
carboxmethyl cellulose (NaCMC, C28H30Na8O27), 
acrylamide (AAm, C3H5NO), N, N’-methylene-
bis-acrylamide (MBA, C7H10N2O2) and Mueller-
Hinton agar that were procured from Himedia. 
Furthermore, potassium per sulfate (KPS, K2S2O8) 
and sodium chloride (NaCl) were obtained from 
Fluka. From Thomas maker, acrylic acid (AAc, 
C3H4O2) and from Alpha Chemika, potassium 
chloride (KCl) were purchased. Additionally, from 
B.D.H, hydrochloric acid (HCl) was obtained. 
Nitrogen gas (N2) was also used in study. The purity 
percentages of these chemicals vary, but most of 
them have purity greater than 98%. 

Preparation of CMC-g-P(AAc-AAm) nano-hydrogel
To synthesize CMC-g-P(AAc-AAm), free radical 

polymerization method was used. Potassium 
persulfate (KPS) was utilized as an initiator 
while methylene bisacrylamide (MBA) served 
as a crosslinking agent. Initially, 1g of sodium 
carboxymethyl cellulose (CMC) was dissolved in 
20 mL deionized distilled water in a three-necked 
round-bottom flask that was equipped with a 
condenser, separating funnel, and nitrogen gas 
inlet. This was followed by heating the solution 
with continuous stirring in a magnetic stirrer-
heater maintained at temperature of 50 °C till 
a homogeneous and transparent solution was 
obtained. Cooling of solution was carried out at 
normal temperature. In the next step, the initiator 
solution (0.1g KPS in 2 mL water) was added to 
above solution with stirring using separating 
funnel. Subsequently, an acrylamide (AAm) 
solution (1g AAm in 1 mL of deionized distilled 
water) was introduced in above mixture with 
constant stirring followed by addition of 4 mL 
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acrylic acid (AAc) with ongoing stirring. Next, the 
crosslinker solution of MBA (0.05g MBA in 1 mL 
deionized distilled water) was added, ensuring 
thorough mixing. All additions were performed 
under a nitrogen (N₂) atmosphere. Finally, mixture 
was added to test tubes and placed in a water bath 
at 70°C for time period of two hours that allow the 
formation of nano-hydrogel [40, 41] as depicted in 
Fig. 1. 

Activating the surface of prepared nano-hydrogel 
and characterization study 

The prepared nano-hydrogel was cut into small 
pieces followed by washing with deionized distilled 
water for one hour. The washing process was 
repeated several times to remove any unreacted 

materials. After thorough washing, the nano-
hydrogel was dried at 60°C and subsequently 
ground to small particles (Fig. 2). 

Successful synthesis of nano-hydrogel was 
confirmed by its analysis via different techniques 
namely Fourier Transform Infrared (FTIR, Shimadzu 
8400s spectrophotometer from 500 to 4000 cm⁻¹), 
Field Emission Scanning Electron Microscopy 
(FESEM, TESCAN MIRA3 at voltage of 25 kV) and 
X-ray Diffraction (XRD, Shimadzu XRD-6000, with 
2θ range of 10° to 80°). 

Calibration curve and adsorption study  
For plotting the calibration curve, variable 

solutions of DS drug (1 mg/L to 30 mg/L) prepared 
and measurement of absorbance was carried out. 
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Fig. 1. Free radical polymerization method for nano-hydrogel synthesis. 
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Results of calibration graph (Fig. 3) revealed the 
higher correlation coefficient value highlighting 
linear relation between drug concentration and its 
respective absorbance. 

For studying the adsorption of DS drug from 
water, solutions of variable concentrations were 
prepared varying from 10 mg/L to 180 mg/L at 
variable temperatures i.e., from 10 °C to 30 °C. 
All experiments were performed at solution pH of 
9 and shaking speed of 120 rpm. The amount of 
nano-hydrogel used in each experiment was 0.06g. 
After an equilibrium time of 120 min, adsorption 

efficiency calculation was carried out employing 
Eq. 1: 

q! =
C" − C!
M × V	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

1
q!
	= 	

1
q#$%

+	
1

q&bC!
	

	

                                                   (1)

Here C0  and Ce, V (mL) and M (g) denotes initial, 
equilibrium dye concentrations (mg/l), solution 
volume and weight of adsorbent correspondingly. 
Three isotherm models i.e., Langmuir, Freundlich, 
Temkin were studied to better understand 
mechanism of adsorption. While results from 
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Fig. 3. Calibration curve for DS drug. 

Fig. 2. Images of prepared nano-hydrogel after (a) cutting, (b) washing, (c) drying and (d) grinding.
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experiment of temperature study were analyzed 
by applying thermodynamic model highlighting 
the feasibility of process. 

RESULTS AND DISCUSSION 
Characterization results 

The functional group study of nano-hydrogel 
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Fig. 4. FTIR results of prepared nano-hydrogel both before and after drug adsorption. 

Fig. 5. XRD results of prepared nano-hydrogel. 
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(Fig. 4) revealed the presence of numerous 
functional groups in it. The peak obtained within 
range 3600-3100 cm⁻¹ correspond to the presence 
of -N-H and -O-H stretching vibrations while the 
-C-H stretching vibrations were observed by the 
presence of small peaks from 2900 cm-1 to 2800 
cm-1. Peaks at 1720 cm-1 and 1630 cm-1 to 1560 
cm-1 are mainly due to the vibrations of -C=O 
bonds in acrylic acid (AAc) and acrylamide (AAm) 
respectively. In addition to that, asymmetric 
and symmetric stretching vibrations of -C=O in 

carboxylate ions are observed by the peaks at 
1488 cm-1 and 1380 cm-1 correspondingly. Peak 
obtained at 1164 cm-1 and 995 cm-1 corresponds 
mainly to the presence of -C-N and -C-O-C bond 
vibrations correspondingly. Post adsorption 
analysis of FTIR revealed remarkable change in 
both intensity and position of -N-H, -O-H, -C=O, 
-C-N and -C-O-C peaks obtained. This reflects the 
interactions between functional groups of studied 
nano-hydrogel and adsorbed drug molecules [17, 
36, 42-52]. 
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Fig. 6. FESEM results of prepared nano-hydrogel (a) before and (b) after drug adsorption.



238

H. Mohammad et al. / Adsorption of Diclofenac Sodium (DS) Drug via Novel Nano-Hydrogel

J Nanostruct 14(1): 232-244, Winter 2024

Crystallographic results of XRD (Fig. 5) revealed 
the presence of a broad peak i.e., at 2θ = 20° to 
30°. This peak confirmed the amorphous nature 
of prepared nano-hydrogel i.e., absence of long-
range order and less crystallinity that is one 
of the key properties of majority of hydrogels 
due to presence of inter-linked polymers in it. 
This amorphous nature of nano-hydrogel is 
responsible for its high swelling property i.e., high 
water retention ability that aid in effective drug 
adsorption [36]. 

Morphological analysis of prepared nano-
hydrogel revealed the presence of numerous 
pores and heterogeneity on its surface before drug 
adsorption (Fig. 6a). The presence of heterogeneity 
is the key feature for any adsorbent. The small 
size particles of nano-hydrogel are responsible 
for adsorbing drug molecules on its surface [53]. 
Post adsorption FESEM results (Fig. 6b) revealed 
the conversion of heterogeneous surface to 
somewhat homogeneous surface due to filling of 
empty active sites by drug molecules. In summary, 
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 10 °C 15 °C 20 °C 30 °C 

Co 

(mg/L) Ce (mg/L) qe (mg/g) Ce (mg/L) qe (mg/g) Ce (mg/L) qe (mg/g) Ce (mg/L) qe (mg/g) 

0 0 0 0 0 0 0 0 0 
10 0.918051 1.513658 1.6268 1.395533 0.563677 1.572721 0 1.666667 
20 2.512735 2.914544 4.284607 2.619232 3.13289 2.811185 0 3.333333 
40 4.58361 5.902732 6.58804 5.56866 5.026578 5.828904 5.757475 5.707087 
60 5.978959 9.003507 8.503876 8.582687 7.429679 8.76172 8.160576 8.639904 
80 7.562569 12.07291 11.2392 11.46013 10.09856 11.65024 11.10631 11.48228 

100 9.112957 15.14784 13.54264 14.40956 12.51274 14.58121 13.3433 14.44278 
120 9.910299 18.34828 16.05648 17.32392 17.73976 17.04337 21.02879 16.4952 
140 13.78627 21.03562 17.82835 20.36194 21.61573 19.73071 23.47619 19.42063 
160 17.98339 23.66944 19.97674 23.33721 24.06312 22.65615 26.58804 22.23533 
180 20.00997 26.66501 24.46179 25.92303 27.42968 25.42839 32.32447 24.61259 

 
  

Table 1. Effect of drug concentration on adsorption capacity (mg/g) of adsorbent at variable temperatures.

Fig. 7. Adsorption of drug onto prepared nano-hydrogel at variable temperatures.
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the surface characteristics of nano-hydrogel varied 
after drug adsorption due to interactions taking 
place between drug molecules and surface of 
nano-hydrogel [21, 36, 54-57]. 

Isotherm and thermodynamic study 
Effect of drug concentration on adsorption 

capacity of prepared nano-hydrogel was studied at 

variable concentrations and temperatures. Results 
of study (Fig. 7 and Table 1) showed that an increase 
in solution concentration led to an increase in 
adsorption capacity while on the other hand, 
increasing temperature resulted in decrement in 
adsorption capacity (Qe). Maximum adsorption 
can take place at the highest concentration i.e., 
180 mg/L but at the lowest temperature i.e., 10 
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Temperature (°C) q$ (mg/g) 
10 26.66501 
15 25.92303 
20 25.42839 
30 24.61259 

 
  

Table 3. Influence of temperature for drug adsorption 
onto prepared nano-hydrogel in terms of qe (mg/g).

Table 2. Langmuir, Freundlich and Temkin model parameters.

Fig. 9. Influence of temperature on drug adsorption onto the 
prepared nano-hydrogel. 



241J Nanostruct 14(1): 232-244, Winter 2024

H. Mohammad et al. / Adsorption of Diclofenac Sodium (DS) Drug via Novel Nano-Hydrogel

°C where 26.66 mg of drug adsorbed per gram 
of adsorbent surface. This capacity continues 
to decrease with increase in temperature and 
reaches 24.61 mg/g while using 180 mg/L solution 
at 30 °C. The results are further confirmed by 
the thermodynamic study wherein the value of 
enthalpy change was negative highlighting the 
exothermic nature of adsorption. This can be 
attributed to the weakening of attractive forces 
between studied drug molecules and adsorbent 
surface at higher temperatures [58]. 

Data from concentration study was applied to 
different isotherm models. The Langmuir model 
mainly deals with single layer adsorption of 
pollutant on adsorbing material [18]. Freundlich 
isotherm, on the other hand, involves the 
adsorption of pollutant on adsorbent surface in 
multilayer manner [25]. For better understanding 
of interactions taking place between adsorbent 
and the adsorbate, Temkin model is widely 
employed that provides information regarding 
adsorption heat changes taking place throughout 

the adsorption process [59]. Linearized forms of 
Langmuir, Freundlich as well as Temkin model are 
expressed by Eqs. 2, 3 and 4 correspondingly. 
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The Langmuir constant and maximum 
adsorption capacity are represented by b (L/mg) 
and qmax (mg/g) correspondingly. 
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Constant and exponent of Freundlich model 
(mg/g) are represented by kf and ‘n’correspondingly 
[56].
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here,  and B refers to constant of universal 
gas (J/mol K) and adsorption heat (J/mol), ,  and  
refers to constant of Temkin equilibrium binding 
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T (°C) ΔG (kJ/mol) ΔH (kJ/mol) ΔS (J/mol K) Kc 

20 0.185 -19.321 -66.274 0.927 
 

Table 4. Parameters obtained from Van’t Hoff graph.  

Fig. 10. Van’t Hoff graph. 
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(L/ g), Temkin constant (J/ mol) and absolute 
temperature in Kelvin correspondingly [59]. 
Results (Fig. 8a-c and Table 2) revealed that data 
fits best to Freundlich model that has the highest 
regression coefficient value i.e., 0.9582 when 
compared with Langmuir (R2 = 0.8773) and Temkin 
(R2 = 0.8113) models. Furthermore, data revealed 
the maximum adsorption capacity of 1.872 mg/g 
from Freundlich model revealing the multilayer 
adsorption of drug on heterogenous adsorbent 
surface [58]. 

Effect of temperature on adsorption capacity 
of adsorbent was investigated by varying 
temperature from 10 °C to 30 °C for 500 mg/L drug 
concentration solution for an equilibrium time of 
120 min. Results (Fig. 9 and Table 3) revealed that 
with increasing temperature, adsorption capacity 
of adsorbent for drug adsorption decreases 
continuously. With increasing temperature 
from 10 °C to 30 °C, there was a decrement in 
adsorption capacity from 26.66 mg/g to 24.61 
mg/g respectively. Findings showed exothermic 
nature of process suggesting breakdown of weak 
adsorption forces (van der Waals forces or dipole-
dipole interactions) between drug molecules and 
adsorbent surface at higher temperatures [58]. 

Data from temperature study was analyzed 
thermodynamically for examining the feasibility 
of process in terms of thermodynamic parameters 
(i.e., ΔH, ΔS, and ΔG). For calculating value of ∆G 
(Eq. 5), distribution coefficient, kc, was employed 
(Eq. 6): 
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where Cad (mg/L), R , T denotes to drug 
concentration that get adsorbed, ideal gas constant 
(8.314  J/mol K) and absolute temperature in 
Kelvin correspondingly. For calculating the change 
in Gibbs free energy (ΔG), Eq. 7 can be used: 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

∆G = ∆H − T∆S	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

                                                         (7)

When we substitute Equation (5) into Equation 
(7), an expression for ln kc can be obtained as Eq. 
8: 
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From the graph (Van’t Hoff graph) plotted 
between ln (Kc) and 1/T, values of ΔH and ΔS 
were determined from its slope and intercept, 
correspondingly. Results of Van’t Hoff plot are 
shown in Fig. 10 and parameters calculated 
from its slope and intercept are elaborated in 
Table 4. Data revealed the non-spontaneous and 
exothermic behaviour of process due to positive 
and negative values obtained for ΔG and ΔH 
respectively. Furthermore, study revealed the 
decreased randomness of system with increasing 
temperature revealing feasibility of studied 
process [60, 61]. 

CONCLUSION 
This research was devoted to investigate the 

adsorptive potential of CMC-g-P(AAc-AAm) nano-
hydrogel towards diclofenac sodium (DS) drug 
removal from water. The nano-hydrogel synthesis 
was carried out via free radical polymerization 
method and characterized by different techniques 
namely FTIR, SEM, and XRD. The analysis revealed 
the highly porous, heterogenous adsorbent surface 
that possess numerous ionic functional groups 
favoring the adsorption process. Concentration 
study showed fitness of data to Freundlich 
model suggesting multilayer adsorption with 
maximum adsorption capacity of 1.872 mg/g. 
From temperature study, feasibility of the process 
and higher adsorption capacity at the lowest 
temperature was confirmed. Overall, the study 
revealed the potential of prepared adsorbent for 
DS drug adsorption from water. 
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