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5-fluorouracil is a widely used anticancer drug with many side effects on 
humans, and hence its analysis in biological samples is very important. 
Accordingly, a novel sensitive electrochemical approach was fabricated 
by incorporating graphene quantum dots (GCD) and 1-butylpyridinium 
bromide (BPBr) in the formulation of a carbon paste electrode (GQD/
BPBr/CPE). The GQD was synthesized and characterized TEM method 
and results confirmed them as being spherical with D~ of 5.0 nm. 
The applicability of the GQD/BPBr/CPE in voltammetric analysis of 
5-fluorouracil was evaluated. The relations of oxidation currents and 
potentials of 5-fluorouracil with pH at the surface of GQD/BPBr/CPE 
were investigated and the results confirmed the involvement of electrons 
and protons in the electro-oxidation mechanism of 5-fluorouracil. In 
square wave voltammetry (SWV) analyses, the GQD/BPBr/CPE showed 
good sensitivity for 5-fluorouracil over a wide linear range of 0.001–400 
μΜ and a detection limit of 0.5 nΜ was achieved. The GQD/BPBr/
CPE was successfully applied for the determination of 5-fluorouracil  in 
pharmaceutical samples and acceptable results were obtained.

INTRODUCTION
The determination of pharmaceutical 

components and especially anticancer drugs such 
as doxorubicin, epirubicin, 5-fluorouracil is very 
important due to the adverse effects of these 
compounds on human body [1-5]. Although, 
some analytical methods such as spectroscopy, 
chemiluminescence, flow injection systems, 
high performance liquid chromatography and 
electrochemical sensors have been suggested 

as efficient tools for the determination of drug 
compounds [6-10], electrochemical methods have 
shown better potentials in this respect due to 
advantages of simplicity, low cost, fast response 
and ease of operation [11-18]. Electrochemists 
have recently introduced modified electrodes as 
powerful substitutes for conventional electrodes 
offering improved selectivity and sensitivity for 
trace and simultaneous determination of drugs or 
other biological species [19-23]. 

Ionic liquids, carbon nanotubes, conductive 
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polymers, dendrimers and DNA are the most 
important electrode surface modifiers suited for 
electrochemical sensors [24-31], the application 
of which in electroanalytical sensors can greatly 
improve the performance [32-38].

5-Fluorouracil is an antimetabolite 
fluoropyrimidine analog, prescribed as a 
chemotherapy drug [39]. The medicine is widely 
used for breast, stomach, pancreatic, skin, 
gullet and bowel cancers. The consumption of 
5-fluorouracil can cause many side effects such 
as nausea, diarrhea and increase the risks of 
infection. Consequently, controlling the dose of 
this drug in biological samples and studying the 
purity of its pharmaceutical forms can help manage 
its side effects. Due to the above-mentioned 
and the potentials of electrochemical methods, 
several reports have been published on preparing 
electrochemical sensors for 5-fluorouracil during 
recent years [39-44].

Fallah-Shojaei et al. used the synergic effect 
of 1,3-dipropylimidazolium bromide and ZnFe2O4 
magnetic nanoparticles for modification of an 
electrode as a sensor for the electrochemical 
determination of 5-fluorouracil and reached a 
detection limit of 0.07 μM [1].

Bukkitgar et al. used a glucose modified 
electrode as a sensor for the determination of 
5-fluorouracil and achieved a detection limit of 
5.17 nM in pharmaceutical and urine samples [45].

Bukkitgar et al. used methylene blue to modify 
the surface of a carbon paste electrode to develop 
a sensor for the determination of 5-fluorouracil 
and reported a detection limit of 2.04 nM [39].

In this investigation, the synergic effect of 
graphene quantum dots and 1-butylpyridinium 
bromide was used for modifying a carbon paste 

electrode. The resulting electrode, i.e. GQD/
BPBr/CPE, was found to be a powerful tool for the 
electrochemical determination of 5-fluorouracil 
in pharmaceutical samples. The results showed 
better detection limits as compared to previous 
reports on the electrochemical sensors modified 
with GQD and BPBr as conductive binders.

    
MATERIALS AND METHODS
Reagents and Instrumentation

Diethyl ether, citric acid, 5-fluorouracil, 
phosphoric acid and 1-butylpyridinium bromide 
were purchased from Sigma-Aldrich. Graphite 
powder was obtained from ACROS Company.

The electrochemical experiments were 
performed using a potentiostat/galvanostat 
system (Autolab). An Ag/AgCl/KClsat was used 
as the references electrode in all voltammetric 
experiments. 

Synthesis of GQD nanoparticles
A pyrolysis approach was used for preparing 

GQD. The method was based on using citric acid 
as the carbon source. In the first step, 2 g of citric 
acid was transferred to a beaker and heated for 30 
min at 250 ˚C to convert the citric acid to a liquid 
phase with orange color (GQD).   

Fabrication of GQD/BPBr/CPE
GQD/BPBr/CPE was prepared by mixing of 0.12 

g of 1-butylpyridinium bromide, 0.88 g of paraffin 
oil, 0.04 g of GQD, and 0.96 g of graphite powder 
in mortar and pestle. The mixture was hand mixed 
for ~ 2 h and a portion of the obtained paste was 
packed into one end of a glass tube, while a copper 
wire was inserted into the tube and the paste from 
the other opening of the tube. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A) TEM image of GQD. B) Absorbance spectra of GQD. 
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RESULTS AND DISCUSSION
Characterization of GQD

The TEM images of GQD were recorded (Fig. 
1A), indicating the presence of spherical particles 
of less than 5 nm in diameter. The UV-Vis spectra 
of GQD (e.g. Fig. 1B) contained an absorbance 
band at~ 350 nm relative to GQD [46]. 

Electrochemical behavior of 5-fluorouracil   
The oxidation behavior of 5-fluorouracil was 

studied in the pH ranges of 5.0-9.0, through 
square wave voltammetry analyses (Fig. 2 insert). 
A linear relation between the oxidation potential 
of 5-fluorouracil and pH with a slope of 60.2 mV/
pH was observed for the electro-oxidation of 

 

 

 

 

Fig. 2. The electro-oxidation mechanism of 5-fluorouracil.       

 

 

 

 

 

 

 

 

 

Fig. 3. The E-pH curve for electro-oxidation of 100 μM 5-fluorouracil. Insert) SWV of 100 μM 
5-fluorouracil at pH ranges of 5.0-9.0.
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5-fluorouracil at GQD/BPBr/CPE (Fig. 2), confirming 
the equal number of electrons and protons 
involved in the electro-oxidation of 5-fluorouracil 
(Fig. 3). In addition, the maximum oxidation 
current was observed at pH=7.0, and hence this 
value was applied in the next experiments.

The SW voltammograms of a 100.0 μM solution 
of 5-fluorouracil was recorded using GQD/BPBr/
CPE (Fig. 4 curve a), BPBr/CPE (Fig. 4 curve b), 
GQD/CPE (Fig. 4 curve c) and CPE (Fig. 4 curve d) 
as the working electrodes. 5-fluorouracil produced 

oxidation signal at potentials of 1006, 1026, 1061 
and 1071 mV with oxidation currents 21.7 μA, 
14.6 μA, 10.7 μA and 5.26 μA at the surfaces of 
GQD/BPBr/CPE, BPBr/CPE, GQD/CPE and CPE, 
respectively. Moving from CPE to GQD/BPBr/CPE, 
the oxidation potential of 5-fluorouracil decreased 
and the oxidation current of the drug increased, 
confirming the high conductivity of GQD and BPBr 
at the carbon paste matrix.

In addition, the data obtained from the current 
density confirmed the trends in the previous 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The SW voltammograms of 100 μM 5-fluorouracil at surface of (a) 
GQD/BPBr/CPE; (b) BPBr/CPE; (c) GQD/CPE and (d) CPE. Insert) Current 
density diagrams obtained from recorded SW voltammograms in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The I-ν1/2 curve for electro-oxidation of 250.0 μM 5-fluorouracil at pH=7.0. 
Insert) linear sweep voltammograms of 250.0 μM 5-fluorouracil at scan rates a) 

20.0; b) 40.0; c) 80.0; d) 120.0 and e) 200.0 mV/s. 
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results (good electrical conductivity of mediators) 
(Fig. 4, insert). The respective active surface areas 
of GQD/BPBr/CPE, BPBr/CPE, GQD/CPE and CPE 
were determined to be 0.26 cm2, 0.27 cm2, 0.26 
cm2 and 0.21 cm2.   

The electro-oxidation behavior of 5-fluorouracil 
was investigated at in the scan rate range of 20-
200 mV/s using GQD/BPBr/CPE (Fig. 5). The linear 
relation between Ipa and ν1/2, observed for the 
electro-oxidation of 5-fluorouracil, indicated the 
electro-oxidation of 5-fluorouracil at the modified 
electrode to be diffusion controlled in nature.    

The diffusion coefficient (D) of 5-fluorouracil was 
determined by recording the chronoamperometric 

(applied potential of 1100 mV) signals of 1.0, 2.0 
and 3.0 mM 5-fluorouracil at the surface of GQD/
BPBr/CPE (see Fig. 6A). The Cottrell plots of GQD/
BPBr/CPE in the presence of 1.0, 2.0 and 3.0 mM 
5-fluorouracil can be seen in Fig. 6B, based on the 
slopes of which the D value was determined to be 
2.18 × 10-6 cm2 s-1.   

The analytical factors influencing the 
determination of 5-fluorouracil by GQD/BPBr/CPE 
were investigated by square wave voltammetry 
(Fig. 7). The GQD/BPBr/CPE showed two linear 
dynamic ranges of from 0.001 to 10.0 μM with 
a regression equation of I = 1.004423 C5-fluorouracil 
+ 0.77 (r2 = 0.9916); and of 10.0 to 400 μM with 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The current-concentration curve for electro-oxidation of 5-fluorouracil at sur-
face of GQD/BPBr/CPE. Insert) The SW voltammograms of GQD/BPBr/CPE in the 
presence of 5-fluorouracil (from inner to outer): 0.01; 2.0; 4.0; 10.0; 30.0; 100.0; 

200.0; 250.0; 300.0 and 400.0 μM 5-fluorouracil.

Fig. 6. (A) Chronoamperograms recorded at GQD/BPBr/CPE in the presence a) 
1.0; b) 2.0 and c) 3.0 mM 5-fluorouracil. (B) The I-t-1/2 plot obtained from the 

chronoamperograms. 
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a regression equation of I = 0.0987 C5-fluorouracil 
+ 10.6280 (r2 = 0.9936). The GQD/BPBr/CPE 
showed a detection limit of 0.5 nM (S/N=3) for 
5-fluorouracil, which is better than those of 
previously reported electrochemical sensors for 
this anticancer drug (table 1). This high sensitivity 
was attributed to the presence of GQD and BPBr 
at surface of CPE. 

Stability and Selectivity
The stability of GQD/BPBr/CPE through 

the electrochemical determinations of 
5-fluorouracil was studied by recording square 
wave voltammograms of 100 μM solutions of 
5-fluorouracil over a period of time (Fig. 8). As can 

be seen, the oxidation current of 5-fluorouracil 
at surface of GQD/BPBr/CPE still showed 92.3% 
of its original oxidation signal after 14 days. This 
was considered as confirming the good stability of 
GQD/BPBr/CPE for determination of 5-fluorouracil. 
The selectivity of GQD/BPBr/CPE toward the 
determination of 20.0 μM 5-fluorouracil was 
found to have an acceptable error of 5%. The 
results presented in table 2, confirm the high 
selectivity of GQD/BPBr/CPE for the determination 
of 5-fluorouracil. 

Real sample analysis
The powerful square wave voltammetric 

analyses were used for the determination of 

Electrode Modifier pH LDR (μM) LOD (μM) Ref. 

screen-printed 

carbon 

Graphene oxides/multi-walled 

carbon nanotubes hybrid 

7.0 0.05-1200 0.016 [34] 

Carbon paste porphyran-capped gold 

nanoparticles 

8.0 29.9-234 0.66 [35] 

Glassy carbon reduced graphene oxide/chitosan 7.0 0.1-15.0 0.0049 [36] 

Glassy carbon cetyltrimethyl ammonium 

bromide 

7.0 0.02-0.6 0.02 [37] 

Carbon paste GQD and BPBr 7.0 0.001-400 0.0005 This work 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Comparison of the analytical parameters of GQD/BPBr/CPE with published electrochemical sensors for determi-
nation of 5-fluorouracil.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The SW voltammograms of 100 μM 
5-fluorouracil at different period time.
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5-fluorouracil in injection and pharmaceutical 
samples through the standard addition method. 
The analytical data are presented in table 3. The 
obtained results were compared with another 
electrochemical strategy and F-test and t-test 
were used to check the accuracy of the method.  

CONCLUSION
A new composite modified electrode (GQD/

BPBr/CPE) was successfully designed and used 
as a powerful voltammetric sensor for the nano-
molar determination of 5-fluorouracil. The 
combination of GQD and BPBr allowed for the 
sensitive detection of 5-fluorouracil in different 
samples. Using the GQD/BPBr/CPE, 5-fluorouracil 
could be measured over a linear calibration range 
of 0.45–450 μM. The GQD/BPBr/CPE showed 
an acceptable performance in the analysis of 
5-fluorouracil in real samples.    
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Table 2. The selectivity test of GQD/BPBr/CPE for determination of 20.0 μM 5-fluorouracil
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