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Abstract 
In this article, the bending and free vibration analysis of functionally 
graded (FG) nanocomposites Timoshenko beam model reinforced by 
single-walled boron nitride nanotube (SWBNNT) using micro-
mechanical approach embedded in an elastic medium is studied. The 
modified coupled stress (MCST) and nonlocal elasticity theories are 
developed to take into account the size-dependent effect. The 
mechanical properties of FG boron nitride nanotube-reinforced 
composites are assumed to be graded in the thickness direction and 
estimated through the micro-mechanical approach. The governing 
equations of motion are obtained using Hamilton’s principle based on 
Timoshenko beam theory. The Navier's type solution is implemented 
to solve the equations that satisfy the simply supported boundary 
conditions. Furthermore, the influences of the slenderness ratio, 
length of nanocomposite beam, material length scale parameter, 
nonlocal parameter, power law index, axial wave number, and 
Winkler and Pasternak coefficients on the natural frequency of 
nanocomposite beam are investigated. Also, the effect of material 
length scale parameter on the dimensionless deflection of FG 
nanocomposite beam is studied. 
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1. Introduction 

   Boron nitride nanotubes (BNNTs) due to the 
exceptional mechanical, electrical, and thermal 
properties are considered for the nanostructures. 
Chen et al. [1] presented a model of composite 
laminated Reddy beam based on modified coupled 
stress theory (MCST). They depicted the effects of 
micro-structures in their model and showed the 

obtained stress from Reddy beam model is lower 
than that of from Timoshenko and Euler - 
Bernoulli beam theories. Mosallaie et al. [2] 
analyzed the torsional buckling of the electro-
thermo-mechanical cylindrical shells reinforced by 
polymer piezoelectric double-walled boron nitride 
nanotubes (DWBNNTs). They expressed 
properties of the electro-thermo-mechanical smart 
composite materials using a micro-mechanical 
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approach. Their results stated that the critical 
buckling load increases with increasing the foam 
core. According to Mori–Tanaka approach, Ansari 
et al. [3] illustrated the free vibration analysis of 
micro-beams made of functionally graded materials 
(FGMs) based on the strain gradient Timoshenko 
beam theory. They assumed the material properties 
of the functionally graded (FG) beams to be graded 
in the thickness direction. Using Hamilton’s 
principle, they derived the equations of motion 
together with corresponding boundary conditions 
for the free vibration analysis of FGM micro-beam. 
Moreover, they compared different beam models 
based on the classical theory (CT), MCST, and 
strain gradient theory (SGT) for various values of 
gradient index. It was shown from their results that 
the value of gradient index plays an important role 
in the vibrational response of the micro-beam for 
lower slenderness ratios. Simsek et al. [4] studied a 
micro scale FG Timoshenko beam model for static 
analysis based on MCST. They assumed the 
material properties of the FG micro-beam to be 
graded in the thickness direction and estimated 
through the Mori–Tanaka homogenization 
technique and the rule of mixture. Their results 
showed that the deflections of the micro-beam by 
the classical beam theory are always larger than 
those by MCST. Shariyat [5] investigated the free 
vibration and buckling analysis of FG rectangular 
plates subjected to the electro-thermo-mechanical 
loadings with surface-bonded or embedded 
piezoelectric sensors and actuators. His results 
showed that generally, initial geometric 
imperfections lead to an increase in the 
fundamental bending natural frequency and 
decreases the critical buckling load. Using 
Timoshenko beam model and von Kármán 
geometric nonlinearity, Ke et al. [6] developed the 
nonlinear free vibration of FG nanocomposite 
beams reinforced by the single-walled carbon 
nanotube (SWCNT). They considered the material 
properties of functionally graded carbon nanotube-

reinforced composites (FG-CNTRCs) to be graded 
in the thickness direction and estimated though the 
rule of mixture. Also, they applied the Ritz method 
to obtain the governing equation of motion which 
is then solved by a direct iterative method to derive 
the nonlinear vibration frequencies of FG-CNTRC 
beams with various boundary conditions. Their 
numerical results depicted the influences of 
nanotube volume fraction, vibration amplitude, 
slenderness ratio, end supports and carbon 
nanotube (CNT) distribution on the nonlinear free 
vibration characteristics of FG-CNTRC beams. 
Xiang et al. [7] studied the free and forced 
vibration analysis of FG laminated beam with 
variable thickness under thermal loading and initial 
stress based on Timoshenko beam theory. They 
considered the effects of the thickness variation, 
temperature change, slenderness ratio, volume 
fraction index, the thickness of FG layer, and 
boundary conditions on the natural frequencies. 
Simsek [8] investigated the analytical and 
numerical procedures for the free vibration of an 
embedded micro-beam under action of a moving 
micro-particle based on MCST within the 
framework of Euler–Bernoulli beam theory. He 
studied the influences of the material length scale 
parameter, Poisson's ratio, velocity of micro-
particle and elastic medium constant on the natural 
frequency of the micro-beam. Rahmati and 
Mohammadimehr [9] analyzed the electro-thermo-
mechanical vibration analysis of non-uniform and 
non-homogeneous boron nitride nanorod 
embedded in an elastic medium. They obtained the 
steady state heat transfer equation without external 
heat source for non-homogeneous rod. They 
investigated the effects of attached mass, lower and 
higher vibrational mode, elastic medium, 
piezoelectric coefficient, dielectric coefficient, 
cross section coefficient, non-homogeneity 
parameter and small-scale parameter on the natural 
frequency. Eltaher et al. [10] illustrated the size 
dependent effect on the static and buckling 
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behavior of FG nano-beam based on the nonlocal 
elasticity theory. They used from the finite element 
method to discretize this model and obtain a 
numerical approximation for equilibrium 
equations. Ghorbanpour Arani et al. [11] studied 
the dynamic stability of SWCNT and double-
walled carbon nanotube (DWCNT) under dynamic 
axial loading using the nonlocal elasticity theory 
and minimum principle of total potential energy. 
They obtained the critical dynamic axial load using 
the Rayleigh-Ritz method. Akgöz and Civalek [12] 
investigated the vibration response of non-
homogeneous and non-uniform micro-beam in 
conjunction with Euler-Bernoulli beam and MCST. 
They used Rayleigh-Ritz method to obtain an 
approximate solution for the free transverse 
vibration. It is observed from their results that the 
influences of material properties on the natural 
frequencies of axially FG tapered microbeams are 
not negligible. Yas and Heshmati [13] presented 
the dynamic analysis of FG nanocomposite beams 
reinforced by randomly oriented straight SWCNTs 
under the actions of moving load. They used 
Timoshenko and Euler–Bernoulli beam theories to 
evaluate dynamic characteristics of the beam. Also, 
they employed the Eshelby–Mori–Tanaka 
approach based on an equivalent fiber to 
investigate the material properties of the 
nanocomposite beam. Their numerical results 
showed that the effects of various material 
distributions, CNT orientations, velocity of the 
moving load, shear deformation, slenderness ratios 
and boundary conditions on the dynamic 
characteristics of the nanocomposite beam.  

In the present work, using Timoshenko beam 
model, the bending and free vibration analysis of 
the FG nanocomposite beam under electro-thermo-
mechanical loadings based on the MCST is 
studied. The effects of the slenderness ratio, length 
of nanocomposite beam, material length scale 
parameter, nonlocal parameter, power law index, 
axial wave number, and Winkler and Pasternak 

coefficients on the natural frequency of FG 
nanocomposite beam reinforced by single-walled 
boron nitride nanotube (SWBNNT) are taken 
into account. 

 
2. The constitutive equations of FG 
nanocomposite beam 

The constitutive equations of electro-thermo-
mechanical beam model based on nonlocal piezo-
elasticity theory can be expressed as follows [14]: 

1   
 2 2

0

'

1 ( ) ij ijkl kl kij k ij

m mkl kl mk k i

e a C h E T

D h E T

  

 

     

   
 

where ij and kl denote the stress and strain 

tensors, respectively. kE and mD  are the electric 

field and electric displacement vectors, 

respectively. ijklC , kijh , ij , mk , and '
i  state the 

elastic constants, piezoelectric coefficients, thermal 
expansion coefficients, dielectric, and pyroelectric, 

respectively. 0e a is the small scale (nonlocal) 

parameter based on Eringen's elasticity theory. The 
constitutive equations for a zigzag structure of the 
SWBNNT can be written as the following matrix 
form Eq. (2):  
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where xE  is the electric field in the x direction. 

The electric field versus the electric potential is 
defined as: 

(3 xE
x


 
  

 
where  denotes the electric potential function.  
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Coupled stress theory is first modified by Yang et 
al. [15]. Therefore, the strain energy based on 
modified coupled stress theory is given by [1]: 
 

4)  

1 ( )
2

, , ,

s ij ij ij ijU m dV

i j x y z
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
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




 
 
where ijm  and ij  denote the deviatoric part of 

couple stress tensor and rotation gradient 
symmetric tensor, respectively, that are defined as 
the following form: 
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whereu ,  , and ijke are the displacement, 

rotation vectors, and permutation symbol, 
respectively. The deviatoric part of couple stress 
tensor is defined as follows: 

6)  2
02 ( )ij ijm l z  

 
where 0l and ( )z  are the material length scale 

parameter and the shear modulus, respectively.  
The displacement fields for Timoshenko beam 
model can be defined as [1]: 
 

7  
( , ) ( ) ( )
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
  

whereU , V , and W are the components of 
displacement in , ,andx y z , respectively. Also, 

 is the rotation of the cross-section. 

Substituting Eq. (7) into Eq. (5) yields: 
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Using Eqs. (1), (2), and (6), the components of 

stress for Timoshenko beam theory can be 
simplified as the following form: 
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where mL and bL  are the material constants 

associated with the field and fibers, respectively 
[1]. 
The mixture of rule for FGM can be defined as 
follows: 
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Where 
mf and 

rf are the volume fraction of the 
matrix and fibers, respectively. 
Using micromechanical model, the FG mechanical, 
electrical, and thermal properties can be obtained as 
follows [2]: 
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3. The governing equations of motion for FG 
nanocomposite Timoshenko beam  
 
     In the present study, the total potential energy 
can be defined as follows: 

13  ( )externalU K W     

where U  , K , and externalW  denote the strain 

energy, kinetic energy and the work done due to the 
external load. The strain energy based on nonlocal 
FG nanocomposite Timoshenko beam model 
subjected to electro-thermo-mechanical loadings 
using MCSTcan be written as: 

0
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The kinetic energy of FG nanocomposite beam is 

considered as follows: 
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The work done due to external load is defined as 
the following form: 

16a  
0

L

externalW f wdA   

where f  including visco-elastic medium and 
transverse load is written as 
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In which wK , pK , and dC  are the visco-elastic 

coefficients. Also, wf  denotes the transverse 

load. Using the minimum principle of total 
potential energy, we have: 
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Using Eq. (17), substituting Eqs. (3), (8) and (9) 
into Eq. (14) and employing Eqs. (15) and (16), the 
governing equations of motion for FG 
nanocomposite beam are obtained as follows: 
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where sk is the shear correction factor. 

To satisfy simply supported boundary conditions, 
the Navier's type solution is defined as: 
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where  and m are the natural frequency and  

axial wave number, respectively. 
 

   After simplifying the equation and eliminating 
potential function from Eqs. (18)-(21), we obtained 

three coupled equations of motion in terms of 0u , 

 , and w . Substituting Eqs. (24) into these 

equations yields: 

25           2M C i K U b   
 

where  M ,  C , and  K  are the mass, 

damping, and stiffness matrices, respectively. 

 U is the displacement vector which is 

considered as follows: 

26 
U

U
W

 
  
 
 

 

To solve the Eq. (25) and reducing it to the 
standard form of eigenvalue problem, it is 
convenient to rewrite Eq. (25) as the following first 
order variable [14]: 

27)      U A U
 

 
in which the state matrix [A] can be defined as:  

28   
   

   1 1

0 I
A

M K M C 

 
  

           
 
 



 
 

  489           
 

M.Mohammadimehr  et al./ JNS 3 (2013) 483-492 
 

4. Results and discussion 
In this research, the bending and free vibration 

analysis of nonlocal FG nanocomposites 
Timoshenko beam model reinforced by the 
SWBNNT embedded in an elastic medium based 
on MCST is investigated. The effects of the 
slenderness ratio, length of nanocomposite beam, 
material length scale parameter, nonlocal 
parameter, power law index, axial wave number, 
and Winkler and Pasternak coefficients on the 
natural frequency of nanocomposite beam are taken 
into account.  

The obtained results of this research are 
compared with the results by Chen et al. [1] for 
isotropic Timoshenko beam model in Table 1 for 
the following values: 

29  
0

25 , 200 ,
174.5 , 0.25, 1 /

h b m L m
E m q N mm

 
 

  
  

 

Table 1 shows that the results of the present 
work are in the good agreement with those by Chen 
et al. [1].  

 
Table 1. Comparison between the results of present 
work and the obtained results by Chen et al. [1]  

 0.25x L  0.5x L  0.9x L  
9/ 10

(chen et al.[1])

w h
1.2735  1.8011  0.5566  

9/ 10

Present work

w h
1.27354  1.80106  0.55656  

 
The obtained results of the present work are 

compared with the other results for simply 
supported isotropic homogeneous Timoshenko 
micro-beam model based on the modified couple 
stress theory in Table 2 for the following values: 

30  3

5 / 6, / 10, 0.38

1220 / , 1.44
17.6

sk L h
kg m E GPa

l m






  

 


 

A good agreement is found between the present 
work and the other work results [16,17, 18]. It is 

seen that the natural frequency increases with 
decreasing /h l . 

Fig. 1 shows the influence of material length 
scale parameter based on MCST on the first natural 
frequency. It is seen from this figure that the natural 
frequency diminishes with an increase in the 
material length scale parameter for low slenderness 
ratio. In the other hand, with increasing slenderness 
ratio, the effect of material length scale parameter 
on the natural frequency is negligible. 
 
Table 2. Comparison of first two natural frequencies 
(MHz) for isotropic homogeneous Timoshenko micro-
beam model 

 Present
work

 Ansari
et al. [16]

Ma et al.
[17]

Ke and 
Wang [18]

/ 10
1

h l
m




 

/ 10
2

h l
m




 

0.037648
 

0.139659

0.0376
 

0.1397

0.03780
 

0.1416  

0.03746
 

0.1390  

/ 5
1

h l
m




 

/ 5
2

h l
m




 

0.077817
 

0.288745

0.0778
 

0.2888

0.07782
 

0.2887  

0.07636
 

0.2837  

/ 3.33
1

h l
m



/ 3.33

2
h l
m




0.122899
 

0.456088

0.1229
 

0.4561

0.1227  
 
0.4555  

0.1180  
 
0.4393  

 
Fig. 2. illustrates the influence of nanocomposite 

beam length on the first natural frequency. It is 
concluded that with increasing of the length of 
nanocomposite beam, the natural frequency 
decreases. 

Fig. 3. shows the influence of axial wave number 
on the natural frequency. It is seen that the first 
natural frequency increases with an increase in the 
values of axial wave number.  
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Fig. 1. The influence of material length scale parameter 
on the first natural frequency. 

 
Fig. 4 shows the influence of nonlocal parameter 

on the natural frequency. It can be seen that with 
increasing of the nonlocal parameter, the natural 
frequency of FG nanocomposite beam model 
reduces. 

The effect of the elastic medium on the natural 
frequency is shown in Fig. 5. It is seen that for low 
slenderness ratio, a change of theelastic medium 
leads to increase the natural frequency of FG 
nanocomposite beam. It is important to note that the 
elastic medium makes the FG nanocomposite beam 
model to be stiffer than without considering the 
elastic medium. In addition, the natural frequency 
of the visco-Winkler-Pasternak model is higher 
than that of the other models. 
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Fig. 2. The influence of nanocomposite beam length on 
the first natural frequency. 
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Fig. 3. The influence of axial wave number on the first 
natural frequency. 
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Fig. 4. The influence of nonlocal parameter on the 
natural frequency. 

 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5 x 10
8

 

 

Slenderness ratio (L/H)

Fi
rs

t n
at

ur
al

 fr
eq

ue
nc

y 
( 

)

Winkler Model
Winkler-Pasternak Model
Visco-Winkler Model
Visco-Winkler-Pasternak Model
Non Visco-Winkler-Pasternak Model

 
Fig.5. The influence of elastic medium coefficient on 
the natural frequency. 

Fig. 6 illustrates the influence of power law 
index on the natural frequency. It is seen that for 
low slenderness ratio, the natural frequency 
decreases with increasing of the power law index. 

Fig. 7 shows the influence of material length 
scale parameter on the dimensionless deflection of 
FG nanocomposite Timoshenko beam model for 
simply supported boundary conditions. It can be 
seen that the dimensionless deflection of FG nano 

beam increases with an increase in thematerial 
length scale parameter.  
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Fig. 6. The influence of power law index on the 
natural frequency. 
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Fig. 7. The influence of material length scale parameter 
on the dimensionless deflection of FG nanocomposite 
Timoshenko beam model 

5. Conclusion  

In this work, the bending and free vibration 
analysis of FG nanocomposites Timoshenko beam 
model using micro-mechanical approach 
reinforced by SWBNNTs embedded in an elastic 
medium was studied. To consider the size-
dependent effect, MCST and nonlocal elasticity 
theory were used in this article. The influences of 
the slenderness ratio, length of nanocomposite 
beam, material length scale parameter, nonlocal 
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parameter, power law index, axial wave number, 
and Winkler and Pasternak coefficients on the 
natural frequency of nanocomposite beam were 
investigated. Moreover, the effect of material 
length scale parameter on the dimensionless 
deflection of FG nanocomposite beam was 
presented. The obtained results of the present work 
are compared with the other results [16, 17, 18] for 
simply supported isotropic homogeneous 
Timoshenko micro-beam model based on the 
modified couple stress theorythat there are a good 
agreement between them. The following results 
were obtained:  

1-The natural frequency diminishes with an 
increase in the material length scale parameter for 
low slendernessratio. 2- With increasing the length 
of nanocomposite beam, the natural frequency 
decreases. 3- The first natural frequency increases 
with an increase in the values of axial wave 
number. 4- With increasing the nonlocal parameter, 
the natural frequency of FG nanocomposite 
reduces. 5-For low slenderness ratio, a change of 
the Winkler - Pasternak coefficients with respect to 
Winkler coefficient leads to increase in the natural 
frequency. Also, the natural frequency for the 
visco-Winkler-Pasternak model is higher than that 
of the other models. 6- The elastic medium causes 
that the FG nanocomposite beam model becomes 
stiffer. 7- For low slenderness ratio, the natural 
frequency decreases with increasing of the power 
law index. 

8- The dimensionless deflection of FG nano beam 
increases with increasing of the material length 
scale parameter. 

Acknowledgment 
The authors would like to thank the referees for 

their valuable comments. They are also grateful to 
thank the Iranian Nanotechnology Development 
Committee for their financial support and the 
University of Kashan for supporting this work by 
Grant No. 255941/6. 

References 

[1] W. Chen, C. Weiwei, K.Y. Sze, Compos. Struct. 
94 (2012) 2599-2609. 
[2] A.A. Mosallaie Barzoki, A. Ghorbanpour Arani, 
A. Kolahchi, M.R.  Mozdianfard, Appl. Math. 
Model. 36 (2012) 2989-2995. 
[3] R. Ansari, R. Gholami, S. Sahmani, Compos. 
Struct. 94 (2011) 221-228. 
[4] M. Simsek, T. Kocatürk, S. D. Akbas, Compos. 
Struct. 95 (2013) 740-747. 
[5] M. Shariyat, Compos. Struct. 88 (2009) 240–
252. 
[6] L.L. Ke, J. Yang, S. Kitipornchai, Compos. 
Struct. 92 (2010) 676–683. 
[7] H.J. Xiang,J. Yang, Compos. Part B.: Eng. 39 
(2008) 292–303. 
[8] M. Simsek, Int. J. Eng. Sci. 48 (2010) 1721–
1732. 
[9] A.H. Rahmati, M. Mohammadimehr, Phys. B.: 
Condens. Matter.440 (2014) 88-98. 
[10] M.A. Eltaher, S.A. Emam, F.F. Mahmoud, 
Compos. Struct.96 (2013) 82-88. 
[11] A. Ghorbanpour Arani, M. Hashemian, A. 
Loghman, M. Mohammadimehr, J. Appl. Mech. 
Tech. Phys.52 (2011) 815-824. 
[12] B.Akgöz, Ö. Civalek, Compos. Struct. 98 
(2013) 314-322. 
[13] M.H. Yas, M. Heshmati, Appl. Math. Model.36 
(2012) 1371–1394. 
[14] Z. Khoddami, A. Ghorbanpour Arani, R. 
Kolahchi, S. Amir, M.R. Bagheri, Compos. Part B.: 
Eng. 45 (2013) 423-432. 
[15] F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, 
Int. J. Solid. Struct. 39 (2002) 27312743. 
[16] R. Ansari, R. Gholami, S. Sahmani, Compos. 
Struct. 94 (2011) 221-228. 
[17] H.M. Ma, X.L. Gao, J.N. Reddy, J. Mech. Phys. 
Solids 56 (2008) 3379-3391. 
[18] L.L. Ke, Y.S. Wang, Compos. Struct. 93 (2011) 
342-350. 

 


