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In this study, ion exchange nanocomposite membranes was prepared 
by addition of Mg(OH)2 nanoparticles to a blend containing sulfonated 
polyphenylene oxide and sulfonated polyvinylchloride via a simple 
casting method. Magnesium hydroxide nanoparticles were synthesized 
via a facile sono-chemical reaction and were selected as filler additive in 
fabrication of ion exchange nanocomposite membranes. Nanoparticles 
and nanocomposites were then characterized using scanning electron 
microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. 
The effect of nanoparticles loading on physicochemical and electrochemical 
properties of prepared cation exchange nanocomposite membranes 
was studied. The membranes performance was evaluated by membrane 
potential, transport number, permselectivity, ionic permeability, flux of 
ions and membrane oxidative stability. Various characterizations revealed 
that the addition of different amounts of inorganic fillers could affect the 
membrane performance. The inorganic nanoparticles not only created 
extra pores and water channels that led to ion conductivity enhancement, 
but also improved transport number, permselectivity and flux of ions.

INTRODUCTION
Ion exchange membrane (IEM) has mostly been 

used in solutions containing multiple components, 
including electrodialytic demineralization of saline 
water, treatment of industrial effluents containing 
metal ions and desalination of cheese whey solution 
[1–3]. The composite membranes represent 
the essential properties of organic polymeric 
matrix and inorganic fillers and put forward 
specific advantages for the fabrication of new 
membranes with suitable thermal and chemical 
resistance, excellent separation performances 
and compatibility to harsh environments [4–11]. 
Thus, organic–inorganic composite materials have 

attracted more concern. Poly (2,6-dimethyl-1,4-
phenylene oxide) (PPO) is a poly-aryl compound 
which has suitable membrane-forming properties, 
appropriate thermal and chemical stability [12]. 
Among the PPO derivatives, aryl substituted 
sulfonated PPO (SPPO) is an appropriate structure 
which has been used as a membrane for reverse 
osmosis, gas separation, ultra-filtration and cation 
exchange membranes [13–21]. The dimensional 
instability of SPPO is a disadvantage which prevents 
its practical applications in fuel cells and electro-
membrane processes [22].  One of the attractive 
procedure for improving the membrane properties 
(e.g., water swelling and dimensional stability) is 
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blending of a mechanical and dimensional stable 
material into hydrocarbon based polymers. 

Polyvinyl chloride is an outstanding material 
because of its high mechanical strength, reasonable 
cost and excellent chemical properties (resistance 
against acid, alkali and organic solvents) [17]. 

Preparing the new type of cation exchange 
nanocomposite membranes with appropriate 
physicochemical properties for application in 
electrodialysis process was main target in this 
work. For the purpose, SPVC/SPPO blend cation 
exchange membranes were prepared by solution 
casting techniques using tetrahydrofuran (THF) as 
solvent. 

Also, Mg(OH)2 nanoparticle was employed 
as inorganic additive in membrane fabrication 
in order to improve the IEMs physicochemical 
properties. Currently no reports have considered 
incorporating Mg(OH)2 nanoparticles into ion 
exchange membranes. The concentration effect 
of Mg(OH)2 nanoparticles on the physicochemical 
properties of prepared homogeneous cation 
exchange nanocomposite membranes was 
evaluated. During this experiment, sodium 
chloride was employed as monovalent ionic 
solutions for the membrane characterization. 
The results are applicable for electro-membrane 
processes especially in electro-dialysis process for 
waste water treatment and water recovery.

MATERIALS AND METHODS
Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) 

with inherent viscosity of 0.57 dl/g in chloroform 
at  25 ◦C was obtained from Institute of Chemical 
Engineering of Beijing (China); SPPO was prepared 
by sulfonation of PPO according to the literature 
[22]. Polyvinylchloride (PVC) purchased from BIPC, 
Iran, grade S-7054. Tetrahydrofuran (THF) LR grade 
as solvent, sodium chloride, sulfuric acid (98%), 
sodium dodecyl sulfate (SDS) and Mg(NO3)2.6H2O 
were supplied from Merck Company. Throughout 
the experiment, distilled water was used.

The test cell used in evaluation of membrane 
electrochemical properties consists of two 
cylindrical sections (vessel, each 140 cm3) made 
of Pyrex glass which are separated by membrane. 
The membrane was fixed between rubber 
rings. One side of each vessel was sealed by Pt 
electrode supported with a fragment of Teflon 
(Polytetrafluoroethylene) and the other side 
was equipped with a piece of porous medium to 
support the membrane. There are two orifices 

on the top of each compartment for feeding and 
sampling aims. In order to minimize the influence 
of boundary layer during experiments and to 
diminish the concentration polarization on the 
vicinity of membrane’s surface, both sections were 
stirred vigorously by magnetic stirrers (Model: Velp 
Sientifica Multi 6 stirrer). The membrane area was 
also 13.85 cm2. The experiments were randomly 
repeated in triplicate and a desirable confidence 
limit (around 95%) was attained.

Morphological investigations of the membranes 
were performed via scanning electron microscopy 
(SEM) from Philips Company at an acceleration 
voltage of 25 kV. The samples were sputtered 
with gold to obtain a conductive surface. FT-IR 
spectra were recorded on Galaxy series FTIR5000 
spectrophotometer. XRD patterns were recorded 
by a Philips, X-ray diffractometer using Ni-filtered 
Cu Ka radiation. 

Characterization of prepared membranes
Transport number and permselectivity

For potential measurements, the circular 
membrane was placed between the two half-cells 
containing NaCl solutions (0.01 and 0.1 mol dm-
3). The membrane/solution interface potential 
was measured using two calomel reference 
electrodes (through KCl bridges) with the aid of 
a digital auto multi-meter and the NaCl solutions 
in the compartments were stirred mechanically. 
The membrane potential developed between the 
solutions contacting with both membrane surfaces 
is expressed via the Nernst equation which was 
employed to estimate the transport number of 
ions as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Em= (2ti
m-1) (RT/nF) ln (a1/a2)                                    

                        
   (1)                                                                         

Where ti
m is transport number of counter-ions 

in membrane phase, T is the temperature, R is 
gas constant, n is the electrovalence of counter-
ion and a1, a2 are electrolyte activities in the 
solutions specified by Debye–Huckel limiting law. 
The higher transport number of the counter-ions 
ti

m in a membrane shows more permselectivity. 
The ionic permselectivity of membranes also 
is quantitatively expressed on the basis of the 
counter-ion migration through the IEMs [23-29].

             Ps= (ti
m - t0)/ (1-t0)  
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Where, t0 is the transport number of counter-
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ions in solution phase [30].

Permeability and flux
For the measurements of ionic permeability and 

the flux of ions, one side of the cell was filled with 
0.1 M NaCl solution and another side with a 0.01 
M solution. Using two stable platinum electrodes 
connected to the end of the compartments, 
a DC electrical potential (Dazheng, DC power 
supply, Model: PS- 302D) with optimal constant 
voltage was applied across the cell. By applying 
of electrical potential during the experiment, 
Na+ ions permeate through the membrane to the 
cathodic compartment and the pH of this region is 
increased as a result of hydroxide ions production. 
Therefore, in order to calculate the transported 
cations through the membrane the number of 
produced hydroxide ions in the cathodic section 
can be used. So the pH change in the cathodic 
region is a measure of the ions permeation (∆n) 
through the membrane. 

In order to establish the equilibrium condition 
in two solution– membrane interfacial sections 
and to minimize the effect of boundary layers, 
both sections were strongly stirred via magnetic 
stirrers [31-33].

Membrane oxidative stability
To evaluate the oxidative stability of prepared 

membranes, they were soaked into 3% H2O2 
aqueous solution containing 4 ppm Fe3+ at 25 ◦C 
for up to 60 h. The weight of the dried membranes 
(dried at 65 ◦C for 3 h) before and after the 
experiment was measured (using Mettler Toledo 
Group, Model: AL204). The percentage of the 
reduced weight can be attributed to the oxidative 

stability of membrane [18, 20].

Synthesis of Mg(OH)2 nanoparticles
Mg(NO3)2.6H2O and SDS (mole ratio of 1:2) 

were dissolved in water were dissolved in 200 mL 
of distilled water. Under ultrasonic waves (100 
W), 100 mL of NaOH solution 1 M (or ammonia) 
was then slowly added to the solution during 40 
minutes. The precipitate was centrifuged and 
washed with distilled water, and later dried at 70 
oC for 20 h in a vacuum dryer. 

The chemical reaction involved in the formation 
of magnesium hydroxide is as follow:  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mg(NO3)2 + 2NaOH               Mg(OH)2    + 2NaNO3                                                                                      (3)

Preparation of cation exchange nanocomposite 
membranes

The cation exchange nanocomposite 
membranes were prepared by casting solution 
technique. The membrane fabrication proceeded 
by dissolving the polymer binders (SPPO and PVC) 
in THF solvent. The mixture was mixed severely 
at room temperature to obtain a homogenous 
mixture. A certain amount of Mg(OH)2 
nanoparticles was dispersed in 10 ml THF with 
ultrasonic waves. The nanoparticles dispersion 
was then gradually added to the polymer solution. 
The new solution was mixed and stirred for 
5 hours, followed by casting it on a clean and 
dry glass plate at 25 ◦C and was placed at room 
temperature. After the evaporation, the samples 
were treated at 50 ◦C, 65 ◦C, 85 ◦C, 105 ◦C (every 
temperature lasted 2 h). Finally, nanocomposite 
membranes were pretreated by dipping in HCl and 
NaCl solutions. A digital caliper device was applied 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Membrane Mg(OH)2 nanoparticle (additive:total solid) (w/w) 

Sample 1 (0.5:100) 

Sample 2 (1:100) 

Sample 3 (2:100) 

Sample 4 (3:100) 

Polymer binder (SPPO:SPVC) (w/w), (7:3); solvent (THF:Polymer binder) (v/w), (10:1); 

Table 1. Compositions of casting solutions in preparation of ion exchange nanocomposite membranes.
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for measuring membranes thickness which 
confirmed that the thicknesses were maintained 
about 30-40 micrometers. The compositions of 
casting solutions are shown in Table 1. 

RESULTS AND DISCUSSION
Mg(OH)2 nanoparticles characterization

Scanning electron microscopy images of 
magnesium hydroxide nanoparticles, prepared 
by sodium hydroxide and ammonia addition 
are shown in Figs. 1 and 2, respectively. In both 

conditions nanoparticles with average diameter 
size less than 100 nm were obtained.

The SEM images of Mg(OH)2 nanoparticles 
after calcination are shown in Fig. 3. It seems 
by applying calcination a little agglomeration 
occurred; SEM images confirm nanoparticles with 
average diameter of 51nm have been obtained.

The XRD pattern of Mg(OH)2 nanoparticles 
is shown in Fig. 4. XRD pattern of magnesium 
hydroxide is indexed as a pure hexagonal structure 
with suitable agreement to literature value 

 

 

 

 

Fig. 1. SEM images of Mg(OH)2 nanoparticles, prepared by NaOH addition 
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(JCPDS card no. 44-1482, Space group: P-3m1, 
cell constants: a, b: 3.1441, c: 4.775 angstrom). 
The crystallite size evaluation was also performed 
using the Scherrer equation [34, 35].

 

 

 

 

Dc=0.9λ/βcosθ                                                         (4)
  

Where β is the width of the observed diffraction 
peak at its half maximum intensity (FWHM) and λ 

is the X-ray wavelength (CuKα radiation, equals to 
0.154 nm). The calculated crystallite size is about 
15 nm. 

FT-IR spectrum of the Mg(OH)2 is shown in 
Fig. 5; the sharp absorption peak at 3695 cm-1 is 
attributed to the O–H bond stretching vibration 
in the crystal structure. Absorption at 434 cm-1 
is assigned to the Mg–O stretching vibration in 
Mg(OH)2 [36]. Broad absorption peak around 

 
Fig. 2. SEM images of Mg(OH)2 nanoparticles, prepared by NH3 addition
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3410 cm-1 is related to O–H bonds of water and 
moisture that are adsorbed on the surface of 
nanostructures. FT-IR spectrum shows that the 
product does not show any intense IR-active peak 
correspond to impurities.

Permselectivity and transport number
The test cell used in evaluation of membrane 

electrochemical properties and the schematic 

of nanocomposites membrane preparation 
are shown in Figs. 6 and 7 respectively. Also, 
the permselectivity and transport number 
of membranes are depicted in Fig. 8. The 
measurements were performed three times for 
each sample and the average values were reported 
in order to minimize the experimental errors.

At first, both increased with the increment of 
Mg(OH)2 nanoparticle concentration to 1 wt% 

 
Fig. 3. SEM images of Mg(OH)2 nanoparticles after calcination
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(sample 2) in the casting solution. This trend can 
be elucidated with respect to the surface charge 
of the nanoparticles. Depending on the pH value 
of the solutions in the cell compartments the 
surface charge of the particles and hence the 
electrostatic forces can be controlled. In our 
experimental conditions (pH= 7.5) the surface of 
Mg(OH)2 nanoparticles was negatively charged 

[35]. Therefore, the existence of attractive 
electrostatic forces between magnesium 
hydroxide nanoparticles and Na+ ions provides 
higher possibility for the counter-ions transport 
which in turn leads to enhanced transport 
number of counter-ions. Also, with the increase of 
nanoparticle concentration (up to 1 wt%), the ionic 
pathways in the membrane matrix are partially 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. XRD pattern of Mg(OH)2 nanoparticles

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. FT-IR spectrum of the Mg(OH)2 nanoparticles
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filled with Mg(OH)2 nanoparticles and so passages 
are narrowed by them as space limiting factors. 
This enhances the membrane permselectivity. 
The permselectivity and transport number were 
diminished again with more additive loading 
from 1 to 3 wt%. More increment in filler loading 
(Mg(OH)2) reduces the membrane selectivity due 
to enhancement of particles density in the casting 
solution which leads to discontinuity of polymer 
chains binder [31]. 

Ionic permeability and flux
According to occurred reactions in the cathodic 

and anodic compartments, the number of 
transported sodium ions through the membrane 
to cathodic part is equal to the generated OH- 

ions in the cathodic compartment. Therefore, 
the results of ionic permeability and flux were 
deduced from pH changes in cathodic region. The 
schematic of ions transport through ion exchange 
membranes is shown in Fig. 9. 

 

 

 

 

 

 

 

 

  

Fig. 6. Schematic diagram of test cell: (1) Pt electrode, (2) membrane, 
(3) orifice, (4) rubber ring, (5) stirrer, (6) magnetic bar

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Schematic of nanocomposites preparation
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Results (Fig. 10) showed that the ionic 
permeability and flux were firstly increased 
with increment in nanoparticles loading up 
to 2 wt.% (sample 3) in the casting solution. 
This is essentially because of the increased 
water channels and porosity in the membrane 
by addition of inorganic nanoparticles, which 
simplifies the migration of ions [12]. When more 
filler was added in the polymer matrix (sample 
4), the nanoparticles tended to aggregate and 
thus tortuosity was increased due to the more 

polymer–filler aggregates interaction. Therefore, 
the ionic permeability and flux of sample 4 are 
lower than other samples in this study.

Membrane oxidative stability
The oxidative stabilities are presented in Table 

2. The results indicated that the oxidative stability 
of membranes decreased with increasing the filler 
loadings in the casting solution. The increasing of 
water diffusion leads to higher oxidant’s diffusion 
in the membranes network and more weight loss 
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Fig. 8. The permselectivity and transport number of prepared membranes 

Fig. 9. Schematic diagram of ions transport through ion exchange membranes
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during the experiment.

CONCLUSION
A new type of ion exchange membranes 

containing magnesium hydroxide nanoparticles 
was successfully prepared. The existence of 
Mg(OH)2 nanoparticles had a considerable 
effect on the structure and properties of the ion 
exchange membranes, which in turn influenced 
the overall membranes performance. It was found 
that Mg(OH)2 nanoparticles could affect overall 
electrochemical and physicochemical properties 
including transport number, permselectivity, 
ionic permeability, flux of ions and membrane 
oxidative stability. In general, the content and type 
of inorganic nanoparticles strongly influenced the 

structure and properties of the nanocomposite 
membranes. The membrane with 1 wt% Mg(OH)2 
nanoparticles exhibited higher permselectivity 
and transport number in comparison with other 
prepared membranes in this research. 
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