Green Biological Fabrication and Characterization of Highly Monodisperse Palladium Nanoparticles Using Pistacia Atlantica Fruit Broth

Document Type: Research Paper


Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran


The development of green and safe processes for the synthesis of nanomaterials is one of the main aspects of nanotechnology. In this study, a biological, inexpensive and rapid process for the fabrication of palladium nanoparticles using the aqueous broth of Pistacia Atlantica fruit as a novel biomass product is reported without using extra surfactant, capping agent, and template. The synthesized palladium nanoparticles were confirmed and characterized by various spectroscopic techniques including UV-Visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer, Fourier transform infrared spectroscopy and Zeta-potential measurement. The results indicate that the spherically shaped Pd nanoparticles were successfully prepared in aqueous media in accordance with the principles of green chemistry with desired stability and crystalline in nature with face centered cubic geometry. Also, the results of transmission electron microscopy (TEM) confirmed preparation of very stable nanoparticles with the small diameter below 15 nm.


1. Taghavi Fardood S, Ramazani A. Green Synthesis and Characterization of Copper Oxide Nanoparticles Using Coffee Powder Extract. J. Nanostruct., 2016; 6(2):167-171.
2. Gopidas KR, Whitesell JK, Fox MA. Synthesis, characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer. Nano Lett., (2003); 3(12):1757-1760.
3. Okitsu K, Yue A, Tanabe S, Matsumoto H. Sonochemical Preparation and Catalytic Behavior of Highly Dispersed Palladium Nanoparticles on Alumina. Chem. Mater., 2001; 13(11):4393-4393.
4. Fritsch D, Kuhr K, Mackenzie K, Kopinke FD. Hydrodechlorination of chloroorganic compounds in ground water by palladium catalysts: part 1. Development of polymer-based catalysts and membrane reactor tests. Catal. Today, 2003; 82(1):105-118.
5. Kowalewska Z, Bulska E, Hulanicki A. Organic palladium and palladium-magnesium chemical modifiers in direct determination of lead in fractions from distillation of crude oil by electrothermal atomic absorption analysis. Spectrochim. Acta B., 1999; 54(5):835-843.
6. Xu CW, Wang H, Shen PK, Jiang SP. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv. Mater., 2007; 19(23):4256-4259.
7. Miao HH, Ye JS, Wong SL, Wang BX, Li XY, Sheu FS. Oxidative modification of neurogranin by nitric oxide: an amperometric study. Bioelectrochemistry, 2000; 51(2):163-173.
8. Turkevich J, Kim G. Palladium: preparation and catalytic properties of particles of uniform size. Science, 1970; 169(3948):873-879.
9. Li C, Sato R, Kanehara M, Zeng H, Bando Y, Teranishi T. Controllable polyol synthesis of uniform palladium icosahedra: effect of twinned structure on deformation of crystalline lattices Angew. Chem. Int. Ed., 2009; 121(37):7015-7019.
10. Chen W, Cai W, Lei Y, Zhang L. A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica. Mater. Lett., 2001; 50(2):53-56.
11. Huang X, Zheng N. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J. Am. Chem. Soc., 2009; 131(13):4602-4603.
12. Shim H, Phillips J, Fonseca IM, Carabinerio S. Plasma generation of supported metal catalysts. Appl. Catal. A-Gen., 2002; 237(1):41-51
13. Moussa S, Abdelsayed V, El-Shall MS. Laser synthesis of Pt, Pd, CoO and Pd–CoO nanoparticle catalysts supported on graphene. Chem. Phys. Lett., 2011; 510(4):179-184.
14. Sheny DS, Philip D, Mathew J. Rapid green synthesis of palladium nanoparticles using the dried leaf of Anacardium occidentale. Spectrochim. Acta A., 2012; 91:35-38.
15. Ganaie SU, Abbasi T, Abbasi SA. Low-cost, environment-friendly synthesis of palladium nanoparticles by utilizing a terrestrial weed Antigonon leptopus. Particul. Sci. Technol., 2016; 34(2):201-208.
16. Dauthal P, Mukhopadhyay M. Biosynthesis of palladium nanoparticles using Delonix regia leaf extract and its catalytic activity for nitro-aromatics hydrogenation. Ind. Eng. Chem. Res., 2013; 52(51):18131-18139.
17. Gan PP, Li SF. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev. Environ. Sci. Biotechnol., 2012; 11(2):169-206.
18. Mallikarjuna K, Sushma NJ, Reddy BS, Narasimha G, Raju BD. Palladium nanoparticles: single-step plant-mediated green chemical procedure using Piper betle leaves broth and their anti-fungal studies. Int. J. Chem. Anal. Sci., 2013; 4(1):14-18.
19. Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Mater. Lett., 2010; 64(18):1951-1953.
20. Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Sun D, Su Y, Opiyo JB, Hong L, Wang Y. Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J. Nanopart. Res., 2010; 12(5):1589-1598.
21. Petla RK, Vivekanandhan S, Misra M, Mohanty AK, Satyanarayana N. Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J. Biomater. Nanobiotechnol., 2012; 3: 14-19.
22. Farhadi K, Forough M, Pourhossein A, Molaei R. Highly sensitive and selective colorimetric probe for determination of l-cysteine in aqueous media based on Ag/Pd bimetallic nanoparticles. Sens. Actuators B Chem., 2014; 202:993-1001.
23. Tohidi M, Khayami M, Nejati V, Meftahizade H. Evaluation of antibacterial activity and wound healing of Pistacia atlantica and Pistacia khinjuk. J. Med. Plant Res., 2011; 5(17):4310-4314.
24. Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A. Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sens. Actuators B Chem., 2012; 161(1):880-885.
25. Yong P, Rowson NA, Farr JP, Harris IR, Macaskie LE. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol. Bioeng., 2002; 80(4):369-379.
26. Nath S, Praharaj S, Panigrahi S, Basu S, Pal T. Photochemical evolution of palladium nanoparticles in Triton X-100 and its application as catalyst for degradation of acridine orange. Curr. Sci., 2007; 92(6):786-790.
27. Banu A, Rathod V, Ranganath E. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum β-lactamase producing (ESBL) strains of Enterobacteriaceae. Mater. Res. Bull., 2011; 46(9):1417-1423.
28. Rajesh S, Sagar Reddy Yadav L, Thyagarajan K. Structural, optical, thermal and Photocatalytic properties of ZnO nanoparticles of Betel Leave by using Green synthesis method. J. Nanostruct., 2016; 6(3):250-255.
29. Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E: Low Dimens. Syst. Nanostruct., 2010; 42(5):1417-1424.
30. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta Part A, 2011; 79(3):594-598.
31. Alvarez-Puebla RA, Arceo E, Goulet PJ, Garrido JJ, Aroca RF. Role of nanoparticle surface charge in surface-enhanced Raman scattering. J. Phys. Chem. B, 2005; 109(9):3787-3792.
32. Park JN, Forman AJ, Tang W, Cheng J, Hu YS, Lin H, McFarland EW. Highly active and sinter‐resistant Pd‐nanoparticle catalysts encapsulated in silica. Small, 2008; 4(10):1694-1697.
33. Zhang S, Leem G, Srisombat LO, Lee TR. Rationally designed ligands that inhibit the aggregation of large gold nanoparticles in solution. J. Am. Chem. Soc., 2008; 130(1):113-120.