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In this study, spinel-type cobalt oxide (Co3O4) and Co3-xDyxO4 (x = 0.04 
and 0.05 molar ratio) nanoparticles were synthesized via combustion 
method at 700 °C. Crystallite nature, phase purity and thermal analysis 
of the prepared compounds were investigated by PXRD, FT-IR and TGA 
techniques. Structural analyses were performed by the FullProf program 
employing profile matching with constant scale factors. The results showed 
that the patterns had a main cubic structure with space group of Fd3m. 
The cell parameter data calculated by rietveld analysis showed that the 
cell parameters were nearly constant. The morphological and structural 
properties of the obtained materials were examined by FESEM and TEM 
images. Besides, the magnetic measurements of Co3O4 and Co3-xDyxO4 
nanoparticles were performed by vibration sampling magnetometer 
(VSM). Coercivity (Hc) and remanent magnetization (Mr) were found 
to be reduced in Dy3+ doped Co3O4 while saturation magnetization (Ms) 
was increased moderately. The effect of dysprosium ion addition was also 
studied using cyclic voltammetry (CV) for the oxygen evolution reaction 
in an alkaline environment. The obtained data showed that the presence 
of Dy3+ exhibited a much higher oxygen evolution activity and lower over 
potential compared to Co3O4.

INTRODUCTION
In recent years, the production of transition 

metal oxides has attracted the attention of 
some research groups due to their special 
properties and envisioned applications in optics, 
magnetic materials and electronics [1-5]. Among 
the metal oxides, a great attention has been 
focused on the synthesis of spinel-type tricobalt 
tetraoxide (Co3O4) which is important in Li-ion 
rechargeable batteries [6], anti-ferromagnetic 
p-type semiconductor, heterogeneous effective 
catalyst in chemical engineering and environmental 
purification [7-8], magnetic materials [9-10], 
electrochemical devices [11], etc. In Co3O4 (or 
CoCo2O4 as AB2O4 spinel), the magnetic Co2+ (3d7) 

cations are located in the tetrahedral sites and 
non-magnetic Co3+ (3d6) cations have occupied 
the octahedral ones. In bulk crystalline form, 
Co3O4 renders antiferromagnetism whereas the 
nanosized Co3O4 shows weak ferromagnetism 
or superparamagnetism [5]. Until now, several 
methods such as hydrothermal [12,13], sol–gel 
[14], chemical spray pyrolysis [15], microemulsion 
[16], chemical vapor deposition [17], thermal 
decomposition of cobalt precursors [18] 
sonochemical route [19], microwave irradiation 
[20], co-precipitation [21], and mechanochemical 
processing [22] have been reported for the 
synthesis of Co3O4. But most of these methods 
require expensive or special instruments and need 
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harsh conditions. Combustion method is known 
as an attractive technique for the synthesis of 
different oxides, including perovskites, ferrites 
and zirconia [23-27]. Moreover, the combustion of 
the corresponding complexes is one of the least 
expensive and simplest methods for preparing 
transition metal oxides nanoparticles with high 
purity [28–31].

In this paper, we present a facile combustion 
method for the synthesis of spinel-type Co3O4 
nanoparticles using a classical complex, 
[Co(acac)3]. So far, several metals have been 
proposed for the synthesis of doped cobalt oxides. 
For example, Jang et al. [32] prepared Mn-doped 
Co3O4, Jeong et. al. [33] reported α -MnO2 doped 
Co3O4 and Rahman et. al. [34] reported Cr-doped 
Co3O4. Lanthanide-doped cobalt oxides have also 
been occasionally reported. Herein we report 
the synthesis of Dy3+-doped Co3O4 nanostructure 
by combustion of [Co(acac)3]. The morphology, 
structure, thermal behavior and magnetic 
properties of the as prepared Co3O4 and Dy3+-
doped Co3O4 nanostructures were investigated by 
SEM, TEM, XRD, FT-IR spectra, cyclic voltammetry 
(CV), TGA and VSM.

EXPERIMENTAL
Materials and Characterization techniques

All the chemicals and solvents were of 
analytical grade and were used without further 
purifications. Fourier transform infrared (FT-IR) 
spectrum were measured by a FT-IR SHIMADZU 
spectrophotometer, with KBr pellet technique 
in the wavelength range from 4000-400 cm-1 
to measure the structural components. The 
crystallographic information and phase purity of 
the samples was obtained with the X-ray powder 
diffraction (XRD) using Bruker D8000 Germany in a 
scanning range of 2θ = 10–90o. The morphological, 
structural and particle size distribution of the 
nanostructures of Co3O4 were carried by the Hitachi 
FESEM model S-4160 field emission scanning 
electron microscope (FESEM) and a transmission 
electron microscopy (TEM, Philips-CM300). 
Thermal analysis (TGA) curve were recorded 
with a STA PT 1600- Linseis(Germany) using a 

heating rate of 5 ºC.min-1 in air atmosphere. Also, 
magnetic measurements were carried out with a 
vibrating sampling magnetometer (VSM, Model 
7400- LakeShore). All electrochemical tests were 
done by a Metrohm instrument, Model 797 VA 
processor, or an Autolab potentiostat-galvanostat, 
Model PGSTAT302. A platinum wire as a counter 
electrode, an Ag/AgCl (3.0 mol L–1 KCl) reference 
electrode and a modified or unmodified glassy 
carbon electrode (GCE) as a working electrode 
were placed in a cell containing electrolyte, and 
then it was used as a conventional three-electrode 
system for all the electrochemical experiments. 
All the potentials reported in this work are vs. Ag/
AgCl (3.0 mol L–1 KCl). 

Preparation [Co(acac)3] complex as a precursor
The complex was synthesized relevant to the 

general synthetic method in the literature. In a 
typical synthesis procedure, 0.38 g (0.0015mmol) 
of Co(CH3COO)2.4H2O was dissolved into 5 mL 
distilled water and was heated to about 90°C using 
a hot water bath with ongoing stirring, then 3 mL 
of acetylacetone was added. While maintaining 
the reaction temperature around 90°C, 4.5 
mL of 35% H2O2 was added drop-wise, using a 
dropping pipette during 20 min. The reaction 
flask was covered by a watch glass during the 
hydrogen peroxide addition. Stirring was retained 
throughout the addition and then for a further 
15 minutes. After this step, the reaction flask 
was cooled in an ice- water bath for 20 minutes. 
Dark green precipitate was filtered under vacuum, 
washed with distilled water, vacuum dried for10 
minutes and then dried in the oven at 100 °C. 
Yield: 75%. FT-IR: ѵmax cm-1 (KBr): 1565 (w, C-H), 
1573 (C=O), 1512 (C=C). 

Preparation of Co3O4 nanoparticles
An appropriate amount of the [Co(acac)3] 

complex powder (2g) as the precursor for the 
synthesis of Co3O4 (S1) was transferred into a 
crucible. To prevent the possibility of dispersion, it 
was turned gel-like with a small amount of distilled 
water. The crucible containing the complex 
was heated at 700 °C for 8h. The black powder  
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Fig. 1. Synthetic protocol of Co3O4 and Co3-xDyxO4 nanoparticles.
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obtained from the calcination was collected for 
characterization. Yield: 85%. FT-IR: ѵmax cm-1 (KBr): 
: 665 (Co-O), 576 (Co-O), 1512 (C=C).

Preparation of Co3-xDyxO4 nanoparticles
Proper molar amounts of [Co(acac)3] (1.96, 1.95) 

and Dy2O3 (0.04 (S2) and 0.05 (S3), respectively), 
were added to a crucible. It was then heated at 
700 °C for 8h. The obtained sample powder (Co3-

xDyxO4) was collected for characterization and for 
comparison with the pure cobalt oxide.

Preparation of the electrodes
The GCE was polished mechanically with 5 µm 

alumina slurry on a polishing cloth. Afterwards, the 
electrode was washed ultrasonically in a mixture 
of ethanol/distilled water solution (1:1 V/V) for 10 
min and dried in the room temperature. 

To deposit Co3O4 and Co1.96Dy0.04O3 on the 
electrode, a relative stable suspension were 
obtained by ultrasonically dispersing of the 
synthesized powders (0.10 mg) in 10 mL distilled 
water. Then, 5.0 µL of the suspension was 
dropped on the electrode and allowed to dry 
in the air at room temperature. Finally, 5 μL of 
1% wt. Nafion solution was dropped onto the 
electrode to increase the adhesion of the coatings 
to the surface.The Co3O4/GCE and Co1.96Dy0.04O3/
GCE, were obtained using the above mentioned 
procedure. 

RESULTS AND DISCUSSION
X-ray diffraction studies

Fig. 2.  shows the XRD pattern of [Co(acac)3] 
complex. All diffraction peaks in this XRD pattern 
matched very good with those reported in the 

literature for the pure [Co(acac)3] complex with 
JCPDS Card no. 24-1627. XRD technique was 
used to check the crystallinity and phase purity 
of the as-prepared Co3O4 (Fig. 3 (a). Our analysis 
revealed that all diffraction peaks were sharp 
and slender, which insinuate the excellent degree 
of crystallinity. The XRD patterns of the sample 
indicated obvious diffraction peaks corresponding 
to 2θ = 19.01º, 31.28º, 36.87º, 38.59º, 44.82º, 
55.68º, 59.4º and 65.25º which were assigned 
to the (111), (220), (311), (222), (400), (422), 
(511) and (440) crystalline planes, respectively. 
Also, Structural analysis was done by the FullProf 
program by employing profile matching with 
constant scale factor. Red bars are observed 
intensities in which obtained from the diffraction 
data. Black ones are calculated data. Blue one is 
the difference: Yobs-Ycalc. The bars below indicate 
the Bragg reflections. Since we have two lines of 
bars, it means there are two phases. The upper 
one is corresponded to Co3O4 and the below one 
is due to Dy2O3. For comparison, we included the 
impurity phase in both S2 and S3 to confirm that 
the impurity phase is apparent in S3. The obtained 
data confirmed the synthesis of Face Centered 
Cubic phase spinel Co3O4 crystalline structure 
with lattice parameters of about a = b = c = 8.08 
Å according to the JCPDS Card no. 43-1003 and 
space group Fd3m [38]. This result confirmed the 
complete decomposition of precursor [Co(acac)3] 
into Co3O4 crystal phase at 700 ºC. Preliminary 
structural investigation of all doped samples in 
Co3-xDyxO4 were determined by analyzing the X-ray 
diffraction patterns. Fig. 3b shows the XRD patterns 
of Co3-xDyxO4 in different molar ratio (x = 0.04 and 
0.05) indicates that the positions of characteristic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2. XRD pattern of the [Co(acac)3] precursor.
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peaks for the doped sample from x= 0.04 is 
consistent with those of undoped cobalt oxide in 
Fig. 3(a). This indicates that dysprosium ions have 
been well accommodated into cobalt lattice sites 
without grable crystal symmetry. According to Fig. 
3c, increasing the amount of dopant Dy3+ ions to 
x= 0.05 shows diffraction lines (red bars) at 2θ ≈ 
28.98°, 43.28° which could be assigned to the (222) 
and (134) crystalline planes of excess Dy2O3. Only a 
small fraction of the total amount of Dy3+ ions goes 
into the cobalt sites and additional amount may 
be on the grain boundaries of the nanocrystals or 
stay on the surface [40]. Therefore, the maximum 

amount of doped ion is 0.05 mmol.
Table 1 shows the average particle size of the 

nanostructures calculated using the Scherrer’s 
equation [39]:

0.9 /  D cosλ β θ=                     (1)

Where D, λ , θ  and β  are the average 
crystalline size, the X-ray wavelength of Cu Kα, 
the Bragg’s diffraction angle and the full width 
at half maximum (FWHM) of the diffraction peak 
respectively. 

Besides, Table 1. shows cell volume and reduced 

 
Fig. 3. XRD patterns of Co3O4 pure (a) and Dy3+ doped Co3O4   in (b= 0.04 and c= 0.05 mmol of dopant) obtained from combustion 

method at 700 °C for 8 h.

 
 
 

 S1 S2 S3 
2 θ 36.8664 36.8903 36.9121 
FWHM 0.23554 0.23334 0.23251 
B1/2 0.00410 0.00407 0.004056 
Cos (θ) 0.9487 0.9486 0.9486 
D (nm) 36 36 36 
Cell parameter(Å) 8.079486 8.084304 8.071710 
χ 2 2.66 1.86 1.37 

 
 
 
 
 
 
 
 
 
 
 
 
  

Table 1. Scherrer data information for pure Co3-xDyxO4 nanomaterials obtained after 8 h at 700 oC in x = 0.0, 0.04 and 0.05 mmol.
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average crystallite sizes of Co3-xDyxO4 in different 
molar ratios (x = 0.04 and 0.05). Table 1. indicates 
that the added Dy3+ has prevented the increasing the 
crystallite size. The observed very little decreasing 
the cell volume and very little increasing average 
crystallite size is due to the difference in the ionic 
radius of dysprosium and cobalt ions (ionic radius of 
Dy3+ = 0.91 A°, Co2+ = 0.65 A° and Co3+ = 0.61 A°) [41]. 
The χ2 values obtained from the rietveld analyses 
show the goodness of the analysis.

FTIR spectra
Fig. 4. shows the FT-IR spectra of the [Co(acac)3] 

complex and its calcination product at 700 oC. The 
spectrum of [Co(acac)3] shows the characteristic 
absorption band of the resonant C=O vibration at 
1573 cm-1. For the calcined sample (Co3O4), the 
obtained results matched well with the spinel-type 
Co3O4 structure. Inspection of this spectrum revealed 
the presence of only two characteristic bands of 
the cobalt oxide at 576 cm-1 (ν1) and 665 cm-1 (ν2) 
which were due to the M-O vibrations, confirming 
complete decomposition of the [Co(acac)3] complex 
to the cobalt oxide and the formation of spinel Co3O4 
[12,35-36]. The ν1 band is characteristic of Co3+ 
vibration in the octahedral site formed by the oxide 
ions and the ν2 band is assigned to the Co2+ vibrations 
in the tetrahedral sites, in the spinel lattice [37].

Field emission scanning electron microscope 
(FESEM)

Fig. 5. shows the FESEM images of spinel 
Co3O4 prepared via the combustion of [Co(acac)3] 

complex without using fuel. As could be seen, the 
prepared Co3O4 nanoparticles exhibited a spherical 
morphology with holes randomly distributed 
among them and the pore sizes of about 50-100 
nm with high density. 

Figs. 6-7 display the FESEM images of the 
Dy3+-doped Co3O4 (x = 0.04 and 0.05 mmol, 
respectively). As could be seen from Fig. 6, 
the pores have multigonal structure and pore 
sizes are about 50-150 nm. The particles of the 
porouses are homogeneous, so porouses became 
homogeneous too. According to Fig. 7, by doping 
Dy3+ in Co3O4 structure, porouse layer particles and 
some particles have been seen so that porouses in 
Fig. 7a and b have two small sizes with a medium 
size about 30-50 nm and large size with a medium 
size about 200 nm. 

Transmission electron microscopy (TEM)
The physical nature and exact size of the 

particles of the Co3O4 were determined by TEM. 
Fig. 8 shows TEM images of the as prepared Co3O4 
nanoparticles with fusiform-like morphology 
and multigonal particles. Moreover, the particles 
of tricobalt tetraoxide have homogeneous and 
uniform distribution in the powder sample. For 
obtaining the exact size of the particles, manual 
analysis has been done which is shown in Fig. 8. 
In this plot, the particle size is about 100 nm. Fig. 
10 shows TEM images of the S2. As is seen in Fig. 
11, the particles sizes are in the range of 14 nm to 
18 nm. According to the TEM image, it could be 
recognized that the used preparation method is 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. FT-IR spectrum of [Co(acac)3] complex and Co3O4 nanoparticles.
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suitable to obtain the nanoparticles of Co3-xDyxO4.  
Low Dy3+ amount is recommended in Co3O4 
synthesis to avoid agglomeration of the particles, 
higher homogeneity and to obtain powder with 
smaller size in comparison with undoped sample. 

Elemental map analysis (Fig. 12) was used 
for investigation of elemental distributions in 

synthesized Co2.96Dy0.04O4. It can be seen from fig. 
9 that Dy, Co and O in Co2.96Dy0.04O4 are uniformly 
distributed in this work. Also, Fig. 13 shows the EDS 
elemental analysis for Co2.96Dy0.04O4. Results show 
the presence of 54.99 at.% O, 1.87 at.% Dy, 3.23 
at C and 39.91 at.% Co, for the Co2.96Dy0.04O4 that 
confirm MAP analysis investigation. Presence of C 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. FESEM images of Co3O4.

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. FESEM images of Co3-xDyxO4(x= 0.04).
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is relative to acetylacetone ligand after burning. 

Thermal analysis 
The TG thermogram of nano-Co3O4 with heating 

rate of 5 oC.min-1 in air atmosphere as carrier gas is 
shown in Fig. 14. The TG curve shows two weight 
loss (WL) steps from ambient temperature till 1000 
ºC. In the first weight loss step, the TGA showed 
a gradual weight loss (8%) up to around 160 ºC 
with the temperature rise which corresponds to 
loss of structural water [42]. The seconds weight 
loss step occurs at the 890-920 ºC temperature 

range with 10% weight loss, which is due to the 
decomposition of Co3O4 into CoO and O2 according 
to the following equilibrium [43]:

Electrochemical impedance spectroscopy
The electrical conductivity effects of the 

synthesized nanoparticles were investigated using 
EIS. Electron transfer resistance, Rct is an important 
factor for this goal. The semicircle portion at 
higher frequencies corresponded to the electron 

 

 

 

 

 

 

 

 

 

Fig. 7. FESEM images of Co3-xDyxO4(x= 0.05).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. TEM images of sample Co3O4. Fig. 9. Manual analysis of sample Co3O4
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transfer limited process for a conductive surface 
or electroactive compound. Fig. 15 shows the 
impedance plots for (a) GCE, (b) Co3O4/GCE, and 
(c) Co3-xDyxO4/GCE in 1.0 mM [Fe(CN)6]

3−/4− (1:1) 
solution in 0.1 M KCl. It is evident from the EIS 
data, at a surface of GCE modified with Co3O4, the 
electron transfer resistance was at its minimum 
value that is relative to the high conductivity 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. TEM images of sample Co3-xDyxO4 (x= 0.04). Fig. 11. Manual analysis of sample Co3-xDyxO4 (x= 0.04).

effect of Co3O4 at the surface of electrode. Also, 
the Rct for GCE modified with Co1.96Dy0.04O3 is high 
compared to Co3O4 that shows doping of Dy3+ 
reduces electrical conductivity of Co3O4. 

Magnetic measurements 
The magnetic characterization of the prepared 

pure and doped Co3O4 was examined using 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Maps of Co, Dy and O distributions in sample Co1.96Dy0.04O3.



399J Nanostruct 8(4): 391-403, Autumn 2018

M. Galini et al. / Properties of pure and Dy-doped Co3O4 nanostructures

vibration sampling magnetometer (VSM). The 
magnetic behavior of the samples in the M-H 
(M- magnetization (memu/g) and H- magnetic 
field (Gouss)) curve are shown in Fig. 16(a-b), 
respectively.  The Co3O4 nanoparticles and Co3-xDyxO4 
showed a weak ferromagnetic nature in which, a 
tiny hysteresis loop can be seen for pure Co3O4. 
In general, bulk Co3O4 has normal spinel structure 
with antiferromagnetic exchange between ions 
accupying the tetrahedral A (high spin Co2+) sites 
and the octahedral B (low spin Co3+) sites [44]. It is 
known that for bulk antiferromagnetic materials, 
zero net magnetization is due to the complete 
compensation of sublattice magnetizations. Hence, 
the change from an antiferromagnetic behavior 
for bulk Co3O4 to a weak ferromagnetic behavior 

for Co3O4 nanoparticles can be attributed to the 
uncompensated surface spins and/or finite size 
effects of the tericobalt tetraoxide nanoparticles 
[45-47].  For the weak ferromagnetic behavior of 
the antiferromagnetic nanostructured material, 
different models have been proposed, such as 
Co3O4 mesoporous [48], CoO thin layers [49], Co3O4 
nanoparticles [9,10, 50-53] and ferromagnetic 
behavior in cobalt oxide nanoparticles based on 
finite size effect [54]. The Dy3+ ions substituted 
cobalt ions in both positions and have changed the 
magnetic interactions between the two sites; this 
change can cause magnetic parameters change 
compared to the pure Co3O4. With doping the 
dysprosium oxide, remanent magnetization (Mr) 
and coercive force (Hc) has been reduced, which 

 

 

 

 

 

 

 

 

 

 

Fig. 13. EDS analysis of the powders Co1.96Dy0.04O3.
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Fig. 14. TG thermograms of Co3O4 nanoparticles in air atmosphere in the temperature range from 
25–1000 °C and heating rate of 5 °C min−1.



400

M. Galini et al. / Properties of pure and Dy-doped Co3O4 nanostructures

J Nanostruct 8(4): 391-403, Autumn 2018

is shown in Table 2. Also, the hysteresis loop is not 
observed in doped sample. 

 
Catalytic activity for oxygen evolution

Oxygen evolution reaction (OER) is one 

of the most important processes in various 
electrochemical devices. Spinal-type Co3O4, an 
inexpensive material, has shown high activity 
and long term performance for OER in alkaline 
electrolyte. Therefore, many studies have been 

 

 

 

 

Fig. 15. Nyquist diagrams of 1 mM K4[Fe(CN)6] in the presence of 0.1 M KCl. (a) bare carbon paste electrode, (b) carbon paste 
electrode with Co1.96Dy0.04O3, and (c) carbon paste electrode with Fe2O3nanoparticle

Fig. 16. Magnetization measurements at room temperature of Co3-xDyxO4 nanostructure in x= 0.0 and 0.05 of Dy3+. The inset shows 
the magnification of the hysteresis loop at Co3-xDyxO4 (x = 0.0).
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devoted to the improvement of the composition 
and structure of Co3O4 to increase of OER efficiency. 
The doping of various metals in Co3O4 structure 
is one way that is employed to increase the 
performance of Co3O4.

The effect of dysprosium doping on the 
electrocatalytic activity of Co3O4 was studied using cyclic 
voltammetry (CV) for the OER in alkaline media. Fig. 
17 shows that the presence of dysprosium increases 
the current of the oxygen evolution. 

At a fixed potential of 1.2 V, current value for 
Co2.96Dy0.04O4/GCE is 1.79 mA, which is about 
1.5 times higher than 1.22 mA for Co3O4/GCE. 
Moreover, it is found that at a fixed current of 1.50 
mA, the potential is 1.16 V for Co2.96Dy0.04O4/GCE 
and 1.24 V for Co3O4/GCE, i.e. the overpotential 
is improved 0.08 V by doping dysprosium. The 
performance improvement of OER by dysprosium 
may be due to an increase in electrical conductivity, 
as evidenced using EIS in section 3.6.

CONCLUSIONS
In this paper, nanosized Co3O4 and Dy3+-doped 

Co3O4 nanoparticles were successfully prepared by 
the combustion of [Co(acac)3] complex at 700 ºC. FT-
IR and X-ray diffraction (XRD) investigates confirmed 
the Co3O4 and Co3-xDyxO4 formation and showed 
the purity of the compounds. TG curve showed 

  

 
Fig. 17. CV curves for (a) Co3O4/GCE, and (b Co1.96Dy0.04O3 /GCE in 0.1 mol L-1 KOH with a sweep rate of 0.05 Vs-1.

a reasonable thermal behavior of cobalt oxide. 
Surface morphology and particle size distribution 
of the synthesized materials investigated by FESEM 
and TEM images, also confirmed dysprosium 
role in better distribution of nanoparticles and in 
particle growth reduction. From this images, the 
spherical morphology was observed with holes 
randomly distributed among them in the Co3O4, 
while in the Co3-xDyxO4 the pores have multigonal 
structure. Porouse layer particles and doping of 
Dy3+ ions promotes improved morphology of Co3-

xDyxO4 nanostructures with higher uniformity 
compared to pure Co3O4. Weak ferromagnetic 
behavior was observed in the compounds using the 
VSM measurements. A small hysteresis loop was 
observed for pure Co3O4, while Dy3+ ions replacing 
cobalt lattice site, caused magnetic parameters 
change compared to the pure Co3O4 and the 
hysteresis loop was not observed in doped sample. 
Finally, we studied the effect of dysprosium additive 
on charge transfer resistance and oxygen evolution 
reactions. The results indicated that dysprosium 
increased the Co3O4 conductivity and its catalytic 
activity towards OER. 
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X 
(molar ratio) -Hc(G) Hc(G) -Mr (emu/g) Mr(emu/g) -Ms(emu/g) Ms(emu/g) Average particle 

size (nm) 
0.0 145.90 537.83 20.73 5.68 0.5534 0.5534 37.89 
2.5 46.51 348.55 12.78 1.89 0.6493 0.6493 36.89 

 
 

Table 2. Remanent magnetization (Mr), saturation magnetization (Ms) and coercive force (Hc) for Co3-xDyxO4 in x= 0.0 and 0.04 of Dy3+.
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