Surface Effect on Vibration of Y-SWCNTs Embedded on Pasternak Foundation Conveying Viscose Fluid

Document Type: Research Paper

Authors

1 Faculty of Mechanical Engineering, and Institute of Nanoscience & Nanotechnology, University of Kashan, Kashan, I.R.Iran.

2 Faculty of Mechanical Engineering

10.7508/jns.2015.01.005

Abstract

Surface and small scale effects on free transverse vibration of a single-walled carbon nanotube (SWCNT) fitted with Y-junction at downstream end conveying viscose fluid is investigated in this article based on Euler-Bernoulli beam (EBB) model. Nonlocal elasticity theory is employed to consider small scale effects due to its simplicity and efficiency. The energy method and Hamilton’s principle are used to establish the corresponding motion equation. To discretize and solve the governing equation of motion the Galerkin method is applied. Moreover, the small-size effect, angle of Y-junction, surface layer and Pasternak elastic foundation are studied in detail. Regarding fluid flow effects, it has been concluded that the fluid flow is an effective factor on increasing the instability of Y-SWCNT. Results show that increasing the angle of Y-junction enhances the flutter fluid velocity where the first and second modes are merged. This work could be used in medical application and design of nano-electromechanical devices such as measuring the density of blood flowing through such nanotubes.

Keywords


[1] S. Iijima, Nature. 354 (1991) 56-58.

M. Terrones, F. Banhart, N. Grobert, J.C. Char-lier, H. Terrones, P.M Ajayan, Physical Review Letters. 89 (2002) 75505-75508.

[2] P. Nagy, R. Ehlich, L.B, Biro, J.Gjyulai, Applied Physics A: Materials Science & Processing .70 (2000) 481-483.

[3] L.A. Chernozatonskii, Physics Letters A. 172 (1992) 173-176.

[4] L.P. Biro, Z.E. Horvath, G.I. Mark, Z. Osvath, A.A. Koos, S. Santucci, J.M. Kenny, Diamond Related Materials. 13 (2004) 241- 249.

[5] A.N. Andriotis, M. Menon, D. Srivastava, L. Chernozatonskii, Physical Review Letters. 87 (2001) 66802-66805.

[6] P. Castrucci, M. Scarselli, M. De Crescenzi, M.A. El Khakani, F. Rosei, N. Braidy, J.H. Yi, Applied Physics Letters (2004) 3857-3859.

[7] P.C. Tsai, Y.R. Jeng, T.H. Fang, Physical Review B. 74 (2006) 45406-45415.

[8] Q, Liu, W, Liu, Z.M. Cui, W.G. Song, L.J. Wan, Carbon. 45 (2007) 268-273.

[9] A.C. Eringen, D.G.B. Edelen, International Journal of Engineering Science. 10 (1972) 233-248.

[10] A.C. Eringen, Nonlocal Continuum Field Theories. Springer-verlag, New York, 2002.

[11] A.C. Eringen, Journal of Applied Physics. 54 (1983) 4703-4710.

[12] A. Ghorbanpour Arani, M, Mohammadimehr, A. Arefmanesh, A. Ghasemi, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 224 (2010) 745-756.

[13] A. Ghorbanpour Arani, M.A. Roudbari, S. Amir, Physica B. 407 (2012) 3646-3653.

[14] T.P. Chang, Computational Materials Science. 54 (2012) 23-27.

[15] Y.D. Kuang, X.Q. He, C.Y. Chen, G.Q. Li, Computational Materials Science . 45 (2009)  875-880.

[16] E. Ghavanloo, F. Daneshmand, M. Rafiei, Physica E. 42 (2010) 2218-2224.

[17] B. Bar On, E. Altus, J of Sound and Vibration. 330 (2011) 652-663.

[18] H.L. Lee, W.J. Chang, Physica E. 43 (2010) 466-469.

[19] M.E. Gurtin, A.I. Murdoch, Archive for Rational Mechanics and Analysis. 57 (1975) 291-323.

L. Wang, Physica E. 43 (2010) 437-439.

[20] Z. Khodami Maraghi, A. Ghorbanpour Arani, R. Kolahchi, S. Amir, M.R. Bagheri, Composites Part B. 45 (2012) 423-432.

[21] C.C. Chern, Y.L. Chen, L.C. Kung, Int J of Computer Mathematics. 87 (2010)1638–64.

[22] G. Chai, C. Fang, X. Gao, Q. Zhao, J of Computational Information Systems. 7 (2011) 507–514.

[23] C.F. Han, C. Zhang, In: Conference on Natural Computation. (2009) 259–64.

[24] D. Bratton, J. Kennedy, In: IEEE Swarm Intelligence Symposium. (2007) 120–127.

[25] M. Pinedo, Scheduling theory, algorithms, and systems. 2nd ed. Prentice Hall 2002.

[26] M. Bazaraa, H. Sherall, C. Shetty, Nonlinear programming, theory and algorithms. New York: Wiley, 1993.

[27] D.S. Norwood, An analysis of Interlaminar Stresses in Unsymmetrically Laminated Plates. Ph.D. Thesis, Virginia Polytechnic Institute and State University, 1990.

[28] C. Mittelstedt, W. Becker, Archive of Applied Mechanics. 73 (2003) 63–74.