Sonochemical Synthesis of Ca(OH)2 Nanoparticles and Its Application in Preparation of MWCNT-Paraloid Nanocomposite

Document Type: Research Paper

Authors

1 Graphic Department , Soore University, Tehran, Iran

2 Faculty of Conservation, Art University of Isfahan, Isfahan, Iran

10.7508/jns.2015.01.004

Abstract

In this work at the first step calcium hydroxide nano-particles were synthesized via sono-chemical method at room temperature. At the second step aminated multi-walled carbon nano-tubes was prepared via chemical modification of surfaces of CNT. Finally modified-MWCNT and Ca(OH)2 were added to paraloid matrix by aid of ultrasonic irradiation. Paraloid-modified-MWCNT-Ca(OH)2 nanocomposite was used as a protection agent applicable in cultural heritage preservation. This nanocomposite can be used against acid rain that is destructive agent in historic monuments. One of the main advantages of paraloid as a consolidant is that it is stronger and harder than polyvinyl acetate without being extremely brittle. Nanostructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Thermal stability behavior of paraloid filled with calcium hydroxide was investigated by thermogravimetric analysis (TGA). Our results show that the MWCNT-Ca(OH)2 nanostructure can enhance thermal stability property of the paraloid matrix. Nano-additives like a barrier slow down volatilization of paraloid chains against heat.

Keywords


[1] S. Koob, Stud Cons 31 (1986) 7–14.

[2] H.R. Momenian, S. Gholamrezaei, M. Salavati-Niasari ,B. Pedram , F. Mozaffar , D. Ghanbari, J Clust Sci 24 (2013) 1031-1042

[3] H.R. Momenian, M. Salavati-Niasari , D. Ghanbari, B. Pedram , F. Mozaffar , S. Gholamrezaei,  J Nano Struc 4 (2014) 99-104

[4] R. Giorgi, C. Bozzi, L. Dei, C. Gabbiani, B. W. Ninham, P. Baglioni, Langmuir 21 (2005) 8495-8501.

[5] X. Guo, L. Zhao, L. Zhang, J. Li, Appl Surf Sci 258 (2012) 2404–2409

[6] S. Liu, J. Ying, X. Zhou, X. Xie, Mater Lett, 63 (2009) 911–913.

[7] R. Giorgi, D. Chelazzi, E. Fratini, S. Langer, A. Niklasson, M. Rådemar, J-E Svensson , P. Baglioni, J Cultural Heritage, 10 (2009) 206-213.

[8] P. Baglioni, R. Giorgi, L. Dei, C. R. Chimie 12 (2009) 61-69.

[9] E. Ciliberto, G.G. Condorelli,S. La Delfa, E. Viscuso, Appl. Phys. A 92 (2008) 137-141.

[10] R. Giorgi, D. Chelazzi, and P. Baglioni, Langmuir, 21 (2005) 10743-10748.

[11] L.S. Gomez-Villalba, • P. López-Arce, M. Alvarez de Buergo, R. Fort, Appl Phys A 104 (2011) 1249-1254.

[12] A. Cataldi, A. Dorigato, F. Deflorian, A. Pegoretti, J Mater Sci 49 (2014) 2035–2044

[13] Chen Y J, Huang L W, Shih T S, Materials Transactions, 44 (2003) 327-335.

[14] Popinet S, Zaleski S, J. Fluid Mech, 464 (2002) 137-163.

[15] AB. Morgan, CA. Wilkie, Flame retardant polymer nanocomposite.: John Wiley & Sons; New Jersey 2007.

[16] D. Ghanbari, M. Salavati-Niasari M. Sabet. Composites: Part B 45 (2013) 550–555.

[17] F. Gholamian, M. Salavati-Niasari, D. Ghanbari, M. Sabet, J Clust Sci 24 (2013) 73–84.

[18] P. Jamshidi, M. Salavati-Niasari, D. Ghanbari, H.R. Shams, J Clust Sci, 24 (2013)1151-1162

[19] H. Naeimi, A. Mohajeri, L. Moradi, A. Rashidi J Nanosci Nanotechnol 11 (2011) 8903-8906.