Facile Synthesis of Nickel Chromite Nanostructures by Hydrothermal Route for Photocatalytic Degradation of Acid Black 1 under Visible Light

Document Type: Research Paper

Authors

Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, I. R. Iran

10.7508/jns.2015.01.003

Abstract

NiCr2O4 normal spinel nanostructures were prepared via hydrothermal treatment at 180 °C for 12 h in the presence of cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS) and poly vinylpyrrolidone-25000 (PVP-25000) as capping agents and subsequent calcination process at 500 °C for 3 h . In this method, [Ni(en)2(H2O)2](NO3)2 and [Cr(en)3]Cl3.3H2O used as precursors and not utilized any alkaline or precipitating agent. Detailed characterization of  the as-prepared nanostructures were carried out by Fourier transform infrared (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance spectroscopy (DRS). XRD revealed the formation of pure nickel chromite spinel phase and SEM showed the formation of uniform sphere-like nanoparticles. Furthermore, the photocatalytic degradation of acid black 1 as diazo dye used in textile and dyeing water pollutants was Investigated.

Keywords


[1] M. Ptak, M. Maczka, A.Gagor, A. Pikul, A. Pikul,    J. Hanuza, J. Solid. State. Chem. 201 (2013) 270–279.

[2] Z. Wang, S.K. Saxena, P. Lazor, H.S.C. O,Neill, J. Phys. Chem. Solids. 64 (2003) 425–431.

[3] J. Sloczynski, J. Ziolkowski, B. Grzybowska, R. Grabowski, D. Jachewize, K. Wcislo, L. Gengembre, J. Catal. 187 (1999) 410–418.

[4] C.L. Honeybourne, R.K. Rasheed, J. Mater. Chem. 6 (1996) 277–283.

[5] B.S. Barros, A.C.F.M. Costa, R.H.G.A. Kiminami, L.D. Gama, J. Metast. Nano Mater. 20–21 (2004) 325-332.

[6] H. Ishibashi, T. Yasumi, J. Magn. Magn. Mater. 310 (2007) 610–612.

[7] Z.Q. Hu, Y. Qin, X.Q. Liu, Adv. Mater. Res. 415–417 (2011) 1594–1598.

[8] S.A. Bakar, N. Soltani, W.M.M. Yunus, E. Saion, A. Bahrami, Solid. State. Commun. 192 (2014) 15–19.

[9] B.S. Barros, A.C.F.M. Costa, R.H.G.A. Kiminami, L.D. Gama, J. Metast. Nano Mater. 20–21 (2004) 325-332.

[10] X.D. Cheng, J. Min, Z.Q. Zhu, W.P. Ye, Int. J. Miner. Metall. Mater. 19 (2012) 173-178.

[11] G.Q. Fen, Z. Xin, G.X. Hu, Y.S. Rong, L. Gang, Chin. J. Inorg. Chem. 28 (2012) 1979–1984.

[12] M. Ptak, M. Maczka, A.Gagor, A. Pikul, A. Pikul,    J. Hanuza, J. Solid. State. Chem. 201 (2013) 270–279.

[13] S.K. Durrani, S.Z. Hussain, K. Saeed, Y. Khan, M. Arif, N. Ahmed, Turk. J. Chem. 36 (2012) 111–120.

[14] L.S. Wojciech, E.R. Richard, Adv. Sci, Tech. 45 (2006) 184–193.

[15] S.S. Acharyya, S. Ghosh, R. Tiwari, B. Sarkar, R.K. Singha, C. Pendem, T. Sasaki, R. Bal, Green Chem. (2014) DOI: 10.1039/c3gc42369g.

[16] M. Rodriguez, V. Sarria, S. Esplugas, C. Pulgarin, J. Photochem. Photobiol. A: Chem. 151 (2002) 129–135.

[17] H. Park, W. Choi, J. Photochem. Photobiol. A: Chem. 159 (2003) 241–247.

[18] F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J Mater Sci: Mater Electron. (2015) DOI 10.1007/s10854-015-3024-1.

[19] F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J Mater Sci: Mater Electron. (2015) DOI 10.1007/s10854-015-3024-1.

[20] F. Davar, M. Salavati-Niasari, Z. Fereshteh, J. Alloy. Compound. 496 (2010) 638-643.

[21] S. Farhadi, Z. Roostaei-Zaniyani, Polyhedron 30 (2011) 971-975.

[22] P.E. Aranha, M.P.D. Santos, S. Romera, E.R. Dockal, Polyhedron 26 (2007) 1373-1382.

[23] Zh. Zhu, X. Cheng, W. Ye, J. Min, Int. J. Min. Met. Mater. 19 (2012) 266-270.

[24] Z. Jiang, J. Xie, D. Jiang, X. Wie, M. Chen, Cryst. Eng. Comm. 15 (2013) 560−569.

[25] S.S. Acharyya, S. Ghosh, R. Bal, ACS Appl. Mater. Interfaces. 6(16) (2014) 14451-14459.

[26] M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Polyhedron 35 (2012) 149-153.