Nanosheets of BiOCl Incorporated in Microflowers: Microwave Assisted Synthesis and Dye-Photosensitized Removal of Pollutants

Document Type: Research Paper

Authors

1 Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran

2 Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran

3 Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran

10.7508/jns.2015.01.001

Abstract

BiOCl microflowers were synthesized using bismuth nitrate pentahydrate and sodium chloride by microwave (MW) assisted synthesis method for 23 minutes at 180 W. Scanning electron microscopy (SEM) studies revealed a unique morphology of flower-like assemblies comprised of nanosheets. The X-ray diffraction (XRD) pattern showed that a highly pure and crystalline phase has been obtained. The energy dispersive X-ray (EDS) and photoluminescence (PL) and Fourier transform infrared (FTIR) spectroscopies were also used to evaluate the composition and structure of the product. The UV-vis diffuse reflectance spectroscopy (DRS) studies revealed the indirect band gap value of about 3.33 eV for the fabricated semiconductor.Photocatalytic studies confirmed that the BiOCl nanostructure could remove Rhodamine B (RhB) and Natural Red 4 (N-Red) dyes from the aqueous solutions by dye-photosensitized degradation mechanism under visible light illumination.

Keywords


[1] O. Akhavan, E. Ghaderi, Nanoscale 5 (2013) 10316-10326.

[2] O. Akhavan, R. Azimirad, S. Safa, Mater. Chem. Phys. 130 (2011) 598-602.

[3] O. Akhavan, M. Choobtashani, E. Ghaderi, J. Phys. Chem. C 116 (2012) 9653-9659.

[4] M. Zhang, Y. Liu, L. Li, H. Gao, X. Zhang, Catal. Comm. 58 (2015) 122-126.

[5] S. Weng, B. Chen, L. Xie, Z. Zheng, P. Liu, J. Mater. Chem. A 1 (2013) 3068-3075.

[6] J. Li, Y. Yu, L. Zhang, Nanoscale 6 (2014) 8473-8488.

[7] H. Du, J. Luan, Solid State Sci. 14 (2012) 1295-1305.

[8] Q. Zhang, Y. Zhou, F. Wang, F. Dong, W. Li, H. Li, G.R. Patzke, J. Mater. Chem. A 2 (2014) 11065-11072.

[9] G. Manna, R. Bose, N. Pradhan, Angew. Chem. Int. Ed. 53 (2014) 6743-6746.

[10] H.-F. Zhai, A.-D. Li, J.-Z. Kong, X.-F. Li, J. Zhao, B.-L. Guo, J. Yin, Z.-S. Li, D. Wu, J. Solid State Chem. 202 (2013) 6-14.

[11] A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121 (1999) 11459-11467.

[12] H. An, Y. Du, T. Wang, C. Wang, W. Hao, J. Zhang, Rare Met. 27 (2008) 243-250.

[13] L. Armelao, G. Bottaro, C. Maccato, E. Tondello, Dalton Trans. 41 (2012) 5480-5485.

[14] C.R. Michel, N.L.L. Contreras, A.H. Martínez-Preciado, Sensor. Actuat. B-Chem. 160 (2011) 271-277.

[15] B. Sarwan, B. Pare, A.D. Acharya, Mater. Sci. Semicond. Process. 25 (2014) 89-97.

[16] Y. Li, C. Li, Z. Zhang, Y. Zhang, X. Sun, H. Si, J. Zhang, Solid State Sci. 34 (2014) 107-112.

[17] S.-M. Zhou, D.-K. Ma, P. Cai, W. Chen, S.-M. Huang, Mater. Res. Bull. 60 (2014) 64-71.

[18] J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Catal. Comm. 26 (2012) 204-208.

[19] M. Nussbaum, N. Shaham-Waldmann, Y. Paz, J. Photoch. Photobio. A 290 (2014) 11-21.

[20] J. Di, J. Xia, S. Yin, H. Xu, L. Xu, Y. Xu, M. He, H. Li, RSC Adv. 4 (2014) 14281-14290.

[21] L. Lei, H. Jin, Q. Zhang, J. Xu, D. Gao, Z. Fu, Dalton Trans. 44 (2015) 795-803.

[22] X. Lin, T. Huang, F. Huang, W. Wang, J. Shi, J. Phys. Chem. B 110 (2006) 24629-24634.

[23] Y.-J. Zhu, F. Chen, Chem. Rev. 114 (2014) 6462-6555.

[24] B. Hayes, Microwave Synthesis: Chemistry at the Speed of Light, CEM Publishing: Matthews, 2002.

[25] P. Lidström, J. Tierney, B. Wathey, J. Westman, Tetrahedron 57 (2001) 9225-9283.

[26] G.A. Tompsett, W.C. Conner, K.S. Yngvesson, Chem. Phys. Chem. 7 (2006) 296-319.

[27] M. Norman, P. Bartczak, J. Zdarta, W. Tylus, T. Szatkowski, A.L. Stelling, H. Ehrlich, T. Jesionowski, Materials 8 (2015) 96-116.

[28] E. Muthuswamy, A.S. Iskandar, M.M. Amador, S.M. Kauzlarich, Chem. Mater. 25 (2013) 1416-1422.

[29] S. Song, W. Gao, X. Wang, X. Li, D. Liu, Y. Xing, H. Zhang, Dalton Trans. 41 (2012) 10472-10476.

[30] N. Dahal, S. García, J. Zhou, S.M. Humphrey, ACS Nano 6 (2012) 9433-9446.

[31] H. Hu, X. Wang, F. Liu, J. Wang, C. Xu, Synthetic Met. 161 (2011) 404-410.

[32] A. Tadjarodi, A.H. Cheshmekhavar, M. Imani, Appl. Surf. Sci. 263 (2012) 449-456.

[33] T. Lin, Z. Liu, M. Zhou, H. Bi, K. Zhang, F. Huang, D. Wan, Y. Zhong, ACS App. Mater. Inter. 6 (2014) 3088-3092.

[34] Y. Choi, G.H. Ryu, S.H. Min, B.R. Lee, M.H. Song, Z. Lee, B.-S. Kim, ACS Nano 8 (2014) 11377-11385.

[35] K. Zhang, J. Huang, H. Wang, G. Yu, B. Wang, S. Deng, J. Kano, Q. Zhang, RSC Adv. 4 (2014) 14719-14724.

[36] M. Mączka, L. Kępiński, L. Macalik, J. Hanuza, Mater. Chem. Phys. 125 (2011) 93-101.

[37] F. Dong, T. Xiong, R. Wang, Y. Sun, Y. Jiang, Dalton Trans. 43 (2014) 6631-6642.

[38] G. Li, F. Qin, R. Wang, S. Xiao, H. Sun, R. Chen, J. Colloid Interface Sci. 409 (2013) 43-51.

[39] J. Xiong, G. Cheng, G. Li, F. Qin, R. Chen, RSC Adv. 1 (2011) 1542-1553.

[40] P. Balaz, M. Achimovicova, M. Balaz, P. Billik, Z. Cherkezova-Zheleva, J.M. Criado, F. Delogu, E. Dutkova, E. Gaffet, F.J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Chem. Soc. Rev. 42 (2013) 7571-7637.

[41] J. Shang, W. Hao, X. Lv, T. Wang, X. Wang, Y. Du, S. Dou, T. Xie, D. Wang, J. Wang, ACS Catal. 4 (2014) 954-961.

[42] T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B 102 (1998) 5845-5851.

[43] A. Sivakumar, B. Murugesan, A. Loganathan, P. Sivakumar, J. Taiwan Inst. Chem. Eng. 45 (2014) 2300-2306.

[44] A.R. Khataee, M.B. Kasiri, J. Mol. Catal. A: Chem. 328 (2010) 8-26.

[45] J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Sol. Energy Mater. Sol. Cells 90 (2006) 1773-1787.

[46] S.K. Apte, S.N. Garaje, S.D. Naik, R.P. Waichal, B.B. Kale, Green Chem. 15 (2013) 3459-3467.

[47] Z. Shan, X. Lin, M. Liu, H. Ding, F. Huang, Solid State Sci. 11 (2009) 1163-1169.

[48] X. Xiao, C. Liu, R. Hu, X. Zuo, J. Nan, L. Li, L. Wang, J. Mater. Chem. 22 (2012) 22840-22843.

[49] L. Cao, F.-J. Spiess, A. Huang, S.L. Suib, T.N. Obee, S.O. Hay, J.D. Freihaut, J. Phys. Chem. B 103 (1999) 2912-2917.

[50] Q. Xiao, Z. Si, J. Zhang, C. Xiao, X. Tan, J. Hazard. Mater. 150 (2008) 62-67.

[51] L. Chen, S.-F. Yin, R. Huang, Y. Zhou, S.-L. Luo, C.-T. Au, Catal. Comm. 23 (2012) 54-57.

[52] G. Tian, Y. Chen, W. Zhou, K. Pan, C. Tian, X.-r. Huang, H. Fu, Cryst. Eng. Comm. 13 (2011) 2994-3000.

[53] X. Zhang, B. Li, J. Wang, Y. Yuan, Q. Zhang, Z. Gao, L.-M. Liu, L. Chen, Phys. Chem. Chem. Phys. 16 (2014) 25854-25861