Magnetic Properties of Fe49Co33Ni18Nanowire ArraysStudied by First-Order Reversal Curve Diagrams

Document Type: Research Paper

Authors

1 Department of Physics, University of Kashan, Kashan, 87317-51167, Iran

2 Institute of Nanoscience& Nanotechnology, University of Kashan, Kashan, 87317-51167, Iran

10.7508/jns.2014.04.007

Abstract

Fe49Co33Ni18 nanowire arrays (175 nm in diameter and lengths ranging from 5 to 32μm) were fabricated into nanopores of hard-anodized aluminum oxide templates using pulsed ac electrodeposition technique. Hysteresis loop measurements indicated that increasing the length decreases coercivity and squareness values (from 274 Oe and 0.58 to200 Oe and 0.105, respectively), indicating the increase in magnetostatic interactions between the nanowires (NWs).On the other hand, first-order reversal curve measurements showed a linear correlation between the magnetostatic interactions and length of NWs. It was also found that with increasing length, the domain structure of NWs changed from single-domain to pseudo single-domain state. A multidomain-like behavior is also seen for the longest NWs length.Increasing the length of NWs resulted in an increase inthe interaction and decrease in the array coercive field as beingsmaller than that of individual NWs (.The observed CFD component in the FORC diagrams of FeCoNi NWs with shorter lengths was a consequence ofnon-uniform length distributions.
 

Keywords


[1] D. A. Allwood, G. Xiong, C. C. Faulkne, D. Atkinson, D. Petit, R. P. Cowburn, Science 309 (2005) 1688-1692.

[2] J. Sarkar, G. G. Khan,A. Basumallick, Bull. Mater. Sci. 30 (2007) 271-290.

[3] S. Shingubara, J. Nanopart. Research. 5 (2003) 17-30.

[4] W. Lee, J. Min. Met. Mater. Soc. 62 (2010) 57-63.

[5] J. Azevedo, C. T. Sousa, J. Ventura, A. Apolinario, A. Mendes, J. P. Araujo, Mater. Res. Express. 1 (2014) 015028.

[6] M. Ghaffari, A. Ramazani, M. Almasi Kashi, J. Phys. D: Appl. Phys. 46 (2013) 295002.

[7] A. Ramazani, M. Almasi Kashi, G. Seyedi, J. Magn. Magn. Mater. 324 (2012) 1826-1831.

[8] M. Albrecht, G. Hu, A. Moser, B. D. Terris, J. Appl. Phys. 97 (2005) 103910-5.

[9] T. C. Arnoldussen, L. L. Nunnelley, Noise in Digital Magnetic Recording. Singapore: World Scientific, 1992.

[10] W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 5 (2006) 741-747.

[11] H. Masuda, K. Fukuda, Science 268 (1995) 1466-1468.

[12] M Fearon, R. W. Chantrell,E. P. Wohlfarth, J. Magn. Magn. Mater. 86 (1990) 197-206.

[13]M. Walker P. I. Mayo, K. O'Grady, S. W. Charles,R. W. Chantrell, J. Phys: Condens. Matter 5 (1993) 2793-2808.

[14]X-d. Che, H. Neal Bertram, J. Magn. Magn. Mater. 116 (1992) 121-127.

[15] M. P. Proenca, K. Merazzo, L. Vivas, D. Leitao, C. Sousa, J. Ventura, J. Araujo, M. Vazquez, Nanotechnology 24 (2013) 475703.

[16] A. P. Roberts, C. R. Pike, K. L. Verosub, J. Geophys. Res. 105 (2000) 28461-28475.

[17] R. Leonhardt, D. Krása, R. S. Coe, phys. earth. planet. in. 147 (2004) 127-140.

[18] C. Carvallo, A. R. Muxworthy, D. J. Dunlop, W. Williams, Earth Planet. Sci. Lett. 213 (2003) 375-390.

[19] A. R. Muxworthy, D. J. Dunlop, Earth Planet. Sci. Lett. 203 (2002) 369-382.

[20] C. R. Pike, A. P. Roberts, M. J. Dekkers, K. L. Verosub, phys. earth. planet. in. 126 (2001) 11-25.

[21]M. Almasi Kashi, A. Ramazani,A. Esmaeily, IEEE Trans. Magn. 49 (2013) 1167-1171.

[22]Y. P. Ivanov, M. Vázquez, O. Chubykalo-Fesenko, J. Phys. D: Appl. Phys. 46 (2013) 485001.

[23] F. Béron, L. Clime, M. Ciureanu, D. Ménard, R. W. Cochrane, A. Yelon, J. Nanosci. Nanotechnol. 8 (2007) 1-11.

[24] S. Samanifar, M. Almasi Kashi, A. Ramazani and M. Alikhani, J. Magn. Magn. Mater. 378 (2015) 73-83.

[25] S. Alikhanzadeh Arani, M. Almasi Kashi, A. Ramazani, Curr. Appl. Phys. 13 (2013) 664-669.

[26] W. D. Zhong,  Ferromagnetism, Beijing: Science Press, 1998.

[27] B. D. Cullity, C. D. Graham, Introduction to magnetic materials, John Wiley & Sons, 2008.

[28] L. Sun, Y. Hao, C-L. Chien, P. C. Searson  IBM J. Res. Dev. 49 (2005) 79-102.

[29] G. C. Han, B. Y. Zong, P. Luo, Y. H. Wu, J. Appl. Phys. 93 (2003) 9202-9206.

[30] C-I. Dobrotă, A. Stancu, J. Appl. Phys. 113 (2013) 043928.

[31] C. Kittel, P. McEuen, Introduction to solid state physics, Academic, New York: Wiley, 1980.

[32] M. Ciureanu, F. Béron, P. Ciureanu, R. W. Cochrane, D. Ménard, A. Sklyuyev, A. Yelon, J. Nanosci. Nanotechnol. 8 (2008) 5725-5732.

[33] L. Clime, F. Béron, P. Ciureanu, M. Ciureanu, R. W. Cochrane,A. Yelon, J. Magn. Magn. Mater. 299 (2006) 487-491.

[34] L. Comstock, Magnetic Information-Storage Materials,Springer Handbook of Electronic and Photonic Materials, 2007.