Low Temperature Synthesis of α-Fe2O3 Nano-rods Using Simple Chemical Route

Document Type: Research Paper

Authors

Department of Physics, Collage of Science, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran

10.7508/jns.2014.04.002

Abstract

Iron oxide (Fe2O3) is widely used as a catalyst, pigment and gas sensitive material.  In this article, α-Fe2O3 nano-rods were first synthesized via a simple chemical method using iron(III) nitrate 9- hydrate (Fe(NO3)3.9H2O) as precursor. XRD pattern showed that the iron oxide nanoparticles exhibited alpha-Fe2O3 (hematite) structure in nanocrystals. The single-phase α- Fe2O3 nano-rods were prepared when the samples calcined at 500 °C. The smallest particle size was found to be 18 nm in diameter. The SEM studies depicted rod-like shaped particles with formation of clusters by increasing annealing temperature. The sharp peaks in FTIR spectrum determined the purity of Fe2O3 nanoparticles and absorbance peak of UV-Vis spectrum showed the small bandgap energy of 2.77 ev. The VSM result showed a coercive field and saturation magnetism around 90 G and 9.95 emu/g, respectively.

Keywords


[1] T. Whitney, P. Searson, J. Jiang, C. Chien, Science. 261 (1993) 1316-1319.

[2] D. Prodan, C. Chaneac, E. Tronc, J. Jolivet, R. Cherkaour, A. Ezzir, M. Nogues, J. Dormann, J. Magn. Magn. Mater. 203 (1999 ) 63-65.

[3] M. Morales, S. Veintemillas-Verdaguer, C. Serna, J. Mater. Res. 14 (1999) 3066-3072.

[4] W. Xinghong, L. Zhang, N. Yonghong, H. Jianming, C. Xiaofeng, J. Phys. Chem. C, 113 (2009) 7003-7008. 

[5] W. Feitknecht, U. Mannweiler, Chim. Acta. 50 (1967) 570-581.

[6] H. El Ghandoor, H.M. Zidan, Mostafa M.H. Khalil, M.I.M. Ismail, Int. J. Electrochem. Sci., 7 (2012) 5734-5745 .

[7] N. Mimura, M. Takahara; Saito, T. Hattori, K. Ohkuma, M. Ando, Catalysis Today, 45 (1998) 61-64.

[8] Y.R. Uhm,W.W. Kim, C.K. Rhee, Scripta Materialia. 50 (2004) 561.-564.

[9] H.K. Edwards, E. Evans, S. McCaldin, P. Blood, D.H. Gregory, M. Poliakoff, J.Phys.: Conference Series. 26 (2006) 195-198.

[10] L. Huo, W. Li, L. Lu, Chem. Mater. 12 (2000) 790 -794.

[11] N. Koukabi, E. Kolvari, A. Khazaei, A.M. Zolfigol , S.B. Shaghasemi, Khavasi, H. Reza, Chem. Commun. 47 (2011) 9230.-9232.

[12] J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, S. Zhang, Nanotechnology. 22 ( 2011) 185501-185508. 

[13] S.K. Sahoo, M. Mohapatra, B. Pandey, Mater. Characterization. 60 (2009) 425.-431.

[14] M.X. Liu, Y.S. Fu, M.H. Xiao, J.C. Huang, J. Solid State Chem. 178 (2005) 2798.-2803.

[15] S. Giri, S. Samanta, S. Maji, S. Ganguli, A. Bhaumik, J. Magn. Magn. Mater. 285 (2005) 296.-302.

[16] H. Wang, G. Wang-Chang, Res Chem Intermed. 37 (2011) 523-529.

[17] P.T. Raming, A.J.A. Winnubst, C.M. Van Kats, P.A. Philipse, J. Colloid Interface Sci. 249 (2002) 346.-350.

[18] Y.S. Koo, B.K. Yun, J.H. Jung, J. Magnetics. 15 (2010) 21-24.

[19] X.Q. Liu, S.W. Tao, Y.S. Shen, Sens Actuators B. 40 (1997) 161–165.

[20] A.B. Chin, I.I. Yaacob, J Mater Process Tech. 191 (2007), 235–237.

[21] S.U. Sonavane, M.B. Gawande, S.S. Deshpande, A. Venkataraman, R.V. Jayaram, Catal Commun. 8 (2007) 1803–1806.

[22] S. Chaianansutcharit, O. Mekasuwandumrong, P. Praserthdam, Ceram Int. 33 (2007) 697–699.

[23] C.Q. Hu, Z.H. Gao, X.R. Yang, Mater Chem Phys. 104 (2007) 429–433.

[24] B. Wang, Q. Wei, S. Qu, Int. J. Electrochem. Sci. 8 (2013) 3786-3793.