Synthesis of tetra-substituted phenanthroimidazole derivatives using SBA-Pr-SO3H

Document Type: Research Paper

Authors

1 Department of Chemistry, Alzahra University, Vanak Square, Tehran, Iran

2 School of Chemistry, College of Science, University of Tehran, Tehran, Iran

Abstract

A one pot four-component reaction of 9,10-phenanthraquinone, aromatic aldehyde, aniline, and ammonium acetate was designed for the preparation of tetrasubstituted imidazoles (phenanthro[9,10-d]imidazole) derivatives in the presence of SBA-Pr-SO3H as a mesoporous solid acid catalyst. Phenanthro[9,10-d]imidazole derivatives were produced by the use of this technique in short reaction times and good to high yields. SBA-15 (Santa Barbara Amorphous), as a hexagonal mesoporous silica with 6 nm pore diameter, was synthesized and then its internal surface was modified with (3-mercaptopropyl)trimethoxysilane following an oxidation process to gain SBA-Pr-SO3H. The latter was then characterized; SEM image showed uniform particles about 700-900 nm and TEM image demonstrated the presence of parallel channels, which resemble the pores configuration of SBA-15. Additionally, the weight reduction in TGA curve in the temperature range of 200-600 °C (about 20% mass loss) established that the anchored propyl sulfonic acid groups onto the SBA-15 pores is about 1.2 mmol/g. This data was also confirmed by back-titration of SBA-Pr-SO3H with standardized NaOH and HCl solutions.

Keywords


INTRODUCTION

Phosphorescent organic light emitting diodes have attracted tremendous attention among the scientists due to their excessive potential in both solid-state lighting and flat-panel presentations. Some of phosphorescent organic compounds are blue organic emitters, although a few of them can be used in organic lighting emitting diodes (OLEDs) [1]. Tri- and tetra-substituted imidazoles [2], especially phenanthro[9,10-d]imidazole derivatives exhibit good electron injection and transport ability, high luminance intensity, therefore, they are good candidates for OLEDs [3]. Because of their industrial applications, introducing an economical synthetic procedure is essential for preparation of phenanthro[9,10-d]imidazole derivatives [4].

So far, a few methods were published for the synthesis of phenanthro[9,10-d]imidazole derivatives; Jawaharmal and coworkers performed the synthesis in glacial acetic acid as solvent within 3 h [5] while Mukhopadhyay used mercaptopropylsilica (MPS) used as a catalyst in a mixture of water and methanol [6]. In many publications, phenanthro[9,10-d]imidazole derivatives were prepared and used as the intermediate for the synthesis of modified electroluminescent materials or OLED [7-12].

After discovering the Santa Barbara Amorphous (SBA-15) by Zhao and coworkers [13], it was extensively used as a good substrate for loading drugs [14], organic compounds [15, 16], and metal cations [17]. The modified SBA-15 can be used in different fields of research such as catalysis [18-20], detection of heavy metals [21, 22], absorption [23-25], and so on. Sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H), as a heterogeneous solid acid catalyst, has been applied in several one-pot syntheses [26, 27]. Therefore, herein we want to report the role of SBA-Pr-SO3H as a highly efficient heterogeneous acid catalyst in the efficient synthesis of phenanthro[9,10-d]imidazole derivatives via a one-pot four-component reaction.

EXPERIMENTAL SECTION

The chemicals employed in this work were obtained from Merck Company and used with no purifications. Infrared (IR) spectra were recorded on KBr disks using a FT-IR Bruker Tensor 27 instrument. Melting points of the products were measured by using the capillary tube method with an Electro thermal 9200 apparatus. The 1H NMR and 13C NMR spectra were obtained by the use of a Bruker 250 MHz and 62.5 MHz, respectively, in either DMSO-dor CDCl3 solution. Mass spectra data were achieved by using a Network mass selective detector 5973 (Agilent) instrument.

Preparation of SBA-Pr-SO3H

SBA-15 was prepared according to the previously published article [13]. Afterward, in order to functionalizing it, the calcined SBA-15 (2 g) and (3-mercaptopropyl)trimethoxysilane (10 mL) were treated together under reflux condition in dry toluene (20 mL) for 24 h. Subsequently, the mixture was filtered off and the obtained solid washed well with dichloromethane for 6 h using a soxhlet apparatus, and then dried under reduced pressure. The obtained crude SBA-Pr-SH was oxidized using excess amount of hydrogen peroxide solution in methanol (20 mL) in the presence of H2SO4 (1 drop) at room temperature overnight. The mixture was filtered and washed with water and acetone. The modified SBA-Pr-SO3H was dried and characterized using TGA, XRD, SEM and TEM.

General procedure for the synthesis of phenanthro [9,10-d]imidazole derivatives 5(a–g)

A mixture of 9,10-phenanthraquinone (0.20 g, 1 mmol), aromatic aldehyde (1 mmol), aniline derivative (1.5 mmol), ammonium acetate (0.31 g, 4 mmol), and SBA-Pr-SO3H (0.02 g) was stirred in refluxing acetic acid (3 mL) for about 5-20 min. After completion of the reaction which was traced by TLC technique, acetic acid was evaporated and the crude product was dissolved in ethanol and DMF. Afterward, the solution was filtered for removal of the heterogeneous catalyst, and the filtrate was cooled to afford the pure product. The catalyst was washed subsequently with a diluted acidic solution, distilled water, and then acetone, and then dried under reduced pressure and reused for several times without significant loss of catalytic activity. The physical and spectroscopic data for the new compounds are given below.

4-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)phenol (5e)

M.P. > 300 C°, FT-IR (KBr) ν (cm-1): 3050, 2595, 1893, 1603, 1444, 1389, 1346, 1250, 1166, 1040, 835, 739, 615, 533, 428. 1H NMR (250 MHz, DMSO-d6) δ (ppm): 6.70 (d, 2H, J=8.2 Hz, ArH), 7.04 (d, 1H, J=8 Hz, ArH), 7.27-7.73 (m, 9H, ArH), 7.37 (d, 2H, J=8.2 Hz, ArH), 8.66 (d, 1H, J=7.7 Hz, ArH), 8.79-8.87 (m, 2H, ArH). 13C NMR (62.5 MHz, DMSO-d6) δ (ppm): 115.4, 120.5, 121.4, 122.5, 122.9, 124, 124.8, 125.4, 126, 127, 127.1, 127.8, 128, 128.7, 129.6, 130.5, 130.7, 131.1, 136.8, 138.8, 151.5, 158.5. Mass m/z (%): 386 (M+, 40), 119 (53), 91 (43), 77 (80), 55 (87), 41 (100).

2-(3-nitrophenyl)-1-phenyl-1H-phenanthro-[9,10-d]imidazole (5f)

M.P. 233-235 C°, IR (KBr) ν (cm-1): 3049, 1809, 1671, 1587, 1521, 1451, 1380, 1336, 1150, 1079, 1035, 986, 913, 799, 755, 706, 527. 1H NMR (250 MHz, CDCl3) δ (ppm): 7.16-7.77 (m, 11H, ArH), 7.96 (d, 1H, J=7.7 Hz, ArH), 8.09 (d, 1H, J=7.7 Hz, ArH), 8.35 (s, 1H, ArH), 8.67 (d, 1H, J=8 Hz, ArH), 8.74 (d, 1H, J=8.5 Hz, ArH), 8.85 (d, 1H, J=8 Hz, ArH). 13C NMR (62.5 MHz, CDCl3) δ (ppm): 120.9, 122.7, 122.8, 123.2, 123.7, 124.1, 125.3, 125.9, 126.4, 127, 127.4, 128.4, 128.9, 129.2, 129.6, 130.4, 130.6, 132.1, 134.7, 137.5, 138.2, 147.9, 148. Mass m/z (%): 415 (M+, 3), 324 (100), 265 (89), 237 (89), 192 (80), 43 (78).

2-(2,4-dimethoxyphenyl)-1-phenyl-1H-phenanthro[9,10-d]imidazole (5g)

M.P. 213-215 C°, IR (KBr) ν (cm-1): 3010, 2941, 2832, 2588, 1945, 1612, 1579, 1527, 1461, 1378, 1295, 1202, 1158, 1115, 1031, 916, 833, 800, 750, 691, 622, 532, 426. 1H NMR (250 MHz, CDCl3) δ (ppm): 3.5 (s, 3H, CH3), 3.77 (s, 3H, CH3), 6.28 (s, 1H, ArH), 6.49 (d, 1H, J=8.2 Hz, ArH), 7.27 (s, 1H, ArH), 7.41-7.44 (m, 7H, ArH), 7.59-7.74 (m, 3H, ArH), 8.70 (d, 1H, J=8 Hz, ArH), 8.75 (d, 1H, J=8.5 Hz, ArH), 8.88 (d, 1H, J=7.7 Hz, ArH). 13C NMR (62.5 MHz, CDCl3) δ (ppm): 54.9, 55.3, 98.1, 104.4, 112.9, 120.9, 122.8, 123, 124, 124.7, 125.3, 126.1, 127.1, 127.4, 128.1, 128.6, 128.8, 128.9, 133.2, 137.4, 138.4, 150, 158.7, 162.1. Mass m/z (%): 430 (M+, 100), 399 (46), 353 (27), 267 (79), 190 (77), 163 (90), 77 (78).

RESULTS AND DISCUSSION

In this paper, a series of tetrasubstituted imidazoles named as phenanthro[9,10-d]imidazole were prepared through a one-pot four-component reaction of 9,10-phenanthraquinone 1, aromatic aldehyde 2, aniline 3, and ammonium acetate 4 using SBA-Pr-SO3H as a nanoporous solid acid catalyst (Fig. 1). At first, in order to modify the reaction conditions, different environments were tested including solvent-free system at ambient temperature and 120 °C, refluxing in water, ethanol and/or acetic acid as green solvents. As shown in Table 1, the best result was obtained under refluxing in acetic acid in the presence of SBA-Pr-SO3H (0.02 g) with excellent yield of the product. To investigate the effect of catalyst, this reaction was tested under modified conditions in the absence of SBA-Pr-SO3H; the results showed that SBA-Pr-SO3H can catalyze the reaction in a shorter time with high yield of the product. After this, to study the generality of this process, several aromatic aldehydes were applied for the synthesis of other phenanthro[9,10-d]imidazole derivatives as shown results in Table 2. Except compounds 5c and 5g, all the other products were obtained in high yields by varying the reaction time in the range of 5-20 min. The low efficiency of products 5c and 5g perhaps is owing to the side reaction which likely occurs in p-anisaldehyde stains [28] in which methoxy substituted benzaldehydes can form a triarylmethane dye in the presence of acetic acid under acidic media.

In order to understand the effect of SBA-Pr-SO3H as catalyst in this reaction, the reaction conditions of present methodology were compared with some other published methods [5, 6, 29, 30] and summarized in Table 3 (Entries 2 and 3). As it is clear, the safe and green SBA-Pr-SO3H catalyzed and accelerated the reaction more efficiently to give the higher yield of product within shorter reaction time.

The proposed mechanism is shown in Fig. 2. Firstly, the carbonyl group of aromatic aldehyde is protonated by the solid acid catalyst. Then, a nucleophilic attack of ammonia, produced by ammonium acetate, and then aniline to the activated carbonyl group of compound 6 gives intermediate 8. Condensation of 9,10-phenanthraquinone 1 with intermediate 8 through an imination process produces compound 9 which is cyclized by addition of the second amine group. Finally, after a dehydration process, the desired product 5 is obtained.

Preparation and Characterization of SBA-Pr-SO3H

SBA-Pr-SO3H was prepared as mentioned in experimental section, and then, characterized. The TGA curve of SBA-Pr-SO3H is shown in Fig. 3. According to the weight reduction in the temperature range between 200-600 °C (about 20% mass loss), the amount of propyl sulfonic acid groups was calculated as 1.2 mmol/g. In addition, using back titration method, concentration of sulfonic acid functional groups onto the pores of SBA-Pr-SO3H was estimated through addition of a very dilute standardized NaOH solution (0.1 M). The excess amount of NaOH was titrated with a standardized HCl. The obtained data showed that each grams of SBA-Pr-SO3H contains 1.28 mmol sulfonic acid functional groups. Good agreement between both values obtained by back titration and TGA shows that the SO3H groups were incorporated onto the internal surface of SBA-15.

The small angle powder XRD pattern of both SBA-15 and SBA-Pr-SO3H (Fig. 4) display the three characteristic peaks at the 2θ (°) values of 1.00, 1.69 and 1.93 which are corresponded to the 100 (strong), 110 (weak) and 200 (weak) reflections, respectively. Such pattern confirms the 2D-hexagonal structure of mesoporous compounds. Although, a considerable decrease is detected in the intensity of SBA-Pr-SO3H which is due to grafting the propyl-SO3H groups onto the pores of SBA-15.

SEM image of SBA-Pr-SO3H (Fig. 5-Left) displays uniform particles about 700-900 nm. The same morphology was previously observed for SBA-15. It can be concluded that during the modification procedure, the morphology of SBA-15 framework was saved without any changes. Besides this, the TEM image (Fig. 5-Right) demonstrates the parallel channels, which resemble the pores configuration of SBA-15. This confirms that the pore of SBA-Pr-SO3H was not collapsed during two steps modification.

CONCLUSION

In conclusion, in this research the importance of phenanthro[9,10-d]imidazole for OLED technology was shown. Then, SBA-Pr-SO3H was used as a mesoporous solid acid catalyst in the synthesis of phenanthro[9,10-d]imidazole derivatives through a one pot four-component reaction of 9,10-phenanthraquinone, aromatic aldehydes, aniline derivatives and ammonium acetate in refluxing acetic acid. Short reaction time, good yield and easy isolation of the products are the advantages of this method and therefore, phenanthro[9,10-d]imidazole synthesis was improved by the use of an efficient catalyst.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support from the Research Council of Alzahra University and the University of Tehran.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

 

1. Wang K, Wang S, Wei J, Miao Y, Liu Y, Wang Y. Novel diarylborane-phenanthroimidazole hybrid bipolar host materials for high-performance red, yellow and green electrophosphorescent devices. Organic Electronics. 2014;15(11):3211-20.

2. Bamoniri A, Rohani S. Nano-SbCl5/SiO2 as an Efficient Catalyst for One-Pot Synthesis of 2, 4, 5-Trisubstituted Imidazoles Under Solvent- Free Condition. J Nanostruct. 2012;2(2):221-6.

3. Wang Z, Lu P, Chen S, Gao Z, Shen F, Zhang W, et al. Phenanthro[9,10-d]imidazole as a new building block for blue light emitting materials. Journal of Materials Chemistry. 2011;21(14):5451.

4. Yuan Y, Li D, Zhang X, Zhao X, Liu Y, Zhang J, et al. Phenanthroimidazole-derivative semiconductors as functional layer in high performance OLEDs. New Journal of Chemistry. 2011;35(7):1534.

5. L.H.S. Jawaharmal, S. Narwal, G. Singh, D.R. Saini, A. Kaur, S. Narwal, Indo Global J. Pharm. Sci., 2 (2) (2012) 147-156.

6. Mukhopadhyay C, Tapaswi PK, Drew MGB. Room temperature synthesis of tri-, tetrasubstituted imidazoles and bis-analogues by mercaptopropylsilica (MPS) in aqueous methanol: application to the synthesis of the drug trifenagrel. Tetrahedron Letters. 2010;51(30):3944-50.

7. Kuo C-J, Li T-Y, Lien C-C, Liu C-H, Wu F-I, Huang M-J. Bis(phenanthroimidazolyl)biphenyl derivatives as saturated blue emitters for electroluminescent devices. Journal of Materials Chemistry. 2009;19(13):1865.

8. Doré J-F, Chignol M-C. Tanning salons and skin cancer. Photochem Photobiol Sci. 2012;11(1):30-7.

9. Sakaino Y. Complexes of Substituted Imidazoles with Chloranil. Nippon kagaku zassi. 1971;92(4):365-70.

10. Zhan H, Wong W-Y, Ng A, Djurišić AB, Chan W-K. Synthesis, characterization and photovoltaic properties of platinum-containing poly(aryleneethynylene) polymers with phenanthrenyl-imidazole moiety. Journal of Organometallic Chemistry. 2011;696(25):4112-20.

11. Zhuang S, Shangguan R, Huang H, Tu G, Wang L, Zhu X. Synthesis, characterization, physical properties, and blue electroluminescent device applications of phenanthroimidazole derivatives containing anthracene or pyrene moiety. Dyes and Pigments. 2014;101:93-102.

12. Zhuang S, Shangguan R, Jin J, Tu G, Wang L, Chen J, et al. Efficient nondoped blue organic light-emitting diodes based on phenanthroimidazole-substituted anthracene derivatives. Organic Electronics. 2012;13(12):3050-9.

13. Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, et al. Hierarchically Ordered Oxides. Science. 1998;282(5397):2244-6.

14. Bahrami Z, Badiei A, Ziarani GM. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery. Journal of Nanoparticle Research. 2015;17(3).

15. Gholamzadeh P, Mohammadi Ziarani G, Badiei A, Abolhassani Soorki A, Lashgari N. Efficient green synthesis of isoindigo derivatives using sulfonic-acid-functionalized nanoporous silica (SBA-Pr-SO3H) catalyst and study of their antimicrobial properties. Research on Chemical Intermediates. 2012;39(9):3925-36.

16. Mohammadi Ziarani G, Hassanzadeh Z, Gholamzadeh P, Asadi S, Badiei A. Advances in click chemistry for silica-based material construction. RSC Advances. 2016;6(26):21979-2006.

17. Martı́nez An, López C, Márquez F, Dı́az I. Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis. 2003;220(2):486-99.

18. Mohammadi Ziarani G, Aleali F, Lashgari N, Badiei A. An Efficient Green Approach for the Synthesis of Structurally Diversified Spirooxindoles Using Sulfonic Acid Functionalized Nanoporous Silica (SBA-Pr-SO3H). Iranian Journal of Chemistry and Chemical Engineering (IJCCE). 2016;35(1):17-23.

19. Mohammadi Ziarani G, Hosseini Mohtasham N, Lashgari N, Badiei A. Efficient one-pot synthesis of 2H-indazolo[2,1-b]phthalazinetrione derivatives with amino-functionalized nanoporous silica (SBA-Pr-NH2) as catalyst. Research on Chemical Intermediates. 2014;41(10):7581-91.

20. Albayati TM, Doyle AM. Erratum to: Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel. Journal of Nanoparticle Research. 2015;17(6).

21. Afshani J, Badiei A, Karimi M, Lashgari N, Ziarani GM. A Single Fluorescent Sensor for Hg2+ and Discriminately Detection of Cr3+ and Cr(VI). Journal of Fluorescence. 2015;26(1):263-70.

22. Afshani J, Badiei A, Lashgari N, Mohammadi Ziarani G. A simple nanoporous silica-based dual mode optical sensor for detection of multiple analytes (Fe3+, Al3+ and CN-) in water mimicking XOR logic gate. RSC Advances. ٢٠١٦;6(7):5957-64.

23. Hiyoshi N, Yogo K, Yashima T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous and Mesoporous Materials. 2005;84(1-3):357-65.

24. Zheng F, Tran DN, Busche BJ, Fryxell GE, Addleman RS, Zemanian TS, et al. Ethylenediamine-Modified SBA-15 as Regenerable CO2Sorbent. Industrial & Engineering Chemistry Research. 2005;44(9):3099-105.

25. Xu W, Akins DL. Absorption and Exciton Emission by an Aggregated Cyanine Dye Occluded within Mesoporous SBA-15. The Journal of Physical Chemistry B. 2002;106(8):1991-4.

26. Karimi B, Khalkhali M. Solid silica-based sulfonic acid as an efficient and recoverable interphase catalyst for selective tetrahydropyranylation of alcohols and phenols. Journal of Molecular Catalysis A: Chemical. 2005;232(1-2):113-7.

27. Mohammadi Ziarani G, Lashgari N, Badiei A. ChemInform Abstract: Sulfonic Acid-Functionalized Mesoporous Silica (SBA-Pr-SO3H) as Solid Acid Catalyst in Organic Reactions. ChemInform. 2015;46(17):no-no.

28. Cai L. Thin Layer Chromatography. Current Protocols Essential Laboratory Techniques. 2014;8(1):6.3.1-6.3.18.

29. Karami B, Ferdosian R, Eskandari K. ChemInform Abstract: New Conditions for the Effective Synthesis of Tri- and Tetrasubstituted Imidazoles Catalyzed by Recyclable Indium(III) Triflate and Magnesium Sulfate Heptahydrate. ChemInform. 2014;45(27):no-no.

30. Sarkar R, Chaudhuri T, Karmakar A, Mukhopadhyay C. Synthesis and photophysics of selective functionalized π-conjugated, blue light emitting, highly fluorescent C7-imidazo indolizine derivatives. Organic & Biomolecular Chemistry. 2015;13(48):11674-86.