Is the Freeze Drying Method Effect on the Phase Transition Temperature ofβ/β́́ Lithium Zirconium Phosphate?

Document Type: Research Paper

Authors

Department of Chemistry, AzarbaijanShahidMadani University, Tabriz, Iran.

10.7508/jns.2014.03.013

Abstract

Spherical granules of the superionic conductor β/β́ LiZr2(PO4)3 in the range of sub 100 nm sizewere synthesizedvia freeze drying methodand fully reviewed in all aspects. Samples were characterized by the X-ray diffractometry (XRD), the Thermal analysis (TG, DSC), theFourier Transform Infra-Red Spectroscopy (FTIR) and the Scanning Electron Microscopy (SEM).Their structuredepends largely on the method of synthesis, thermaltreatment, and conditions of storing samples. Degree of Crystallinity and phase purity in different annealing time were tested. The synthesize temperature does not exceed 873 K in any step of the synthesis.The low temperature phases (β with the Pbna space group and β́ with the P21/n space group) were preparedat optimum condition. By the Differential Scanning Calorimetry it was shown the phase transition from β↔β́ occurred at about 567-597 K. The temperature of annealing the phosphate and calcination time is not very effective to phase transition temperature.

Keywords


[1] J.B. Goodenough, K.-S. Park, J. Am. Chem. Soc., 135 (2013) 1167-1176.

[2] J.B. Goodenough, Y. Kim, Chem. Mater., 22 (2009) 587-603.

[3] F. Lalère, J.B. Leriche, M. Courty, S. Boulineau, V. Viallet, C. Masquelier, V. Seznec, J. Power Sources, 247 (2014) 975-980.

[4] C. Masquelier, L. Croguennec, Chem. Rev., 113 (2013) 6552-6591.

[5] N. Anantharamulu, K. Koteswara Rao, G. Rambabu, B. Vijaya Kumar, V. Radha, M. Vithal, J. Mater. Sci., 46 (2011) 2821-2837.

[6] V.I. Pet’kov, A.V. Markin, N.N. Smirnova, Russ. J. Phys. Chem. A, 87 (2013) 1266-1271.

[7] V.I. Pet’kov, E.A. Asabina, I.A. Shchelokov, Inorganic Materials, 49 (2013) 502-506.

[8] K.B. Hueso, M. Armand, T. Rojo, Energy & Environmental Science, 6 (2013) 734-749.

[9] O. Kamishima, K. Kawamura, T. Hattori, J. Kawamura, J. Phys.: Condens. Matter, 23 (2011) 225404.

[10] J. Zheng, X. Li, Y. Yu, X. Feng, Y. Zhao, J. Therm. Anal. Calorim., 117 (2014) 319-324.

[11] W.-J. Ou, C.-S. Kao, Y.-S. Duh, J.-M. Hsu, J. Therm. Anal. Calorim., 116 (2014) 1111-1116.

[12] R.J. Brodd, in:  Batteries for Sustainability: Selected Entries from the Encyclopedia of Sustainability Science and Technology, Springer Science+Business Media, New York, 2013, pp. 83.

[13] K. Arbi, M.A. Paris, J. Sanz, Dalton Trans., 40 (2011) 10195-10202.

[14] F. Carn, M. Morcrette, B. Desport, R. Backov, Solid State Sci., 17 (2013) 134-139.

[15] G.R. Dahlin, K.E. Strxm, Lithium Batteries: Research, Technology, and Applications, Nova Science Publishers, New York, 2010.

[16] B. Key, D.J. Schroeder, B.J. Ingram, J.T. Vaughey, Chem. Mater., 24 (2011) 287-293.

[17] D. Jugović, D. Uskoković, J. Power Sources, 190 (2009) 538-544.

[18] J.W. Fergus, J. Power Sources, 195 (2010) 4554-4569.

[19] S. Novikova, M. Sukhanov, M. Ermilova, N. Orekhova, A. Yaroslavtsev, Inorganic Materials, 48 (2012) 397-401.

[20] A.A. Lizin, S.V. Tomilin, O.E. Gnevashov, A.N. Lukinykh, A.I. Orlova, Radiochemistry, 54 (2012) 542-548.

[21] H. Xie, Y. Li, J.B. Goodenough, RSC Advances, 1 (2011) 1728-1731.

[22] H. Xie, J.B. Goodenough, Y. Li, J. Power Sources, 196 (2011) 7760-7762.

[23] V. Pet’kov, I. Shchelokov, A. Markin, N. Smirnova, M. Sukhanov, J. Therm. Anal. Calorim., 102 (2010) 1147-1154.

[24] V.I. Pet’kov, E.A. Asabina, M.V. Sukhanov, A.V. Markin, N.N. Smirnova, Russ. J. Phys. Chem. A, 87 (2013) 1960-1968.

[25] V.I. Pet’kov, A.S. Shipilov, A.V. Markin, N.N. Smirnova, J. Therm. Anal. Calorim., 115 (2014) 1453-1463.

[26] D.W. Bruce, D. O'Hare, R.I. Walton, in:  Functional Oxides, John Wiley and Sons, Padstow, 2010, pp. 157.

[27] P.P. Kumar, S. Yashonath, J. Chem. Sci. (Bangalore, India), 118 (2006) 135-154.

[28] J. Orlenius, O. Lyckfeldt, K.A. Kasvayee, P. Johander, J. Power Sources, 213 (2012) 119-127.

[29] Y. Cui, X. Zhao, R. Guo, Electrochim. Acta, 55 (2010) 922-926.

[30] L. Qian, H. Zhang, J. Chem. Technol. Biotechnol., 86 (2011) 172-184.

[31] Y. Qiao, X. Wang, Y. Mai, X. Xia, J. Zhang, C. Gu, J. Tu, Journal of Alloys and Compounds, 536 (2012) 132-137.

[32] W. Abdelwahed, G. Degobert, S. Stainmesse, H. Fessi, Adv. Drug Delivery Rev., 58 (2006) 1688-1713.

[33] X. Xi, G. Chen, Z. Nie, S. He, X. Pi, X. Zhu, J. Zhu, T. Zuo, J. Alloys Compd., 497 (2010) 377-379.

[34] W.S. Cheow, M.L.L. Ng, K. Kho, K. Hadinoto, Int. J. Pharm., 404 (2011) 289-300.

[35] A. Mousavi, A. Bensalem, B. Gee, Green Chemistry Letters and Reviews, 3 (2010) 135-142.

[36] M. Catti, N. Morgante, R.M. Ibberson, J. Solid State Chem., 152 (2000) 340-347.

[37] M. Casciola, U. Costantino, L. Merlini, I.G.K. Andersen, E.K. Andersen, Solid State Ionics, 26 (1988) 229-235.

[38] R. Ruffo, C.M. Mari, M. Catti, Ionics, 7 (2001) 105-108.

[39] C.M. Burba, R. Frech, Solid State Ionics, 177 (2006) 1489-1494.

[40] T. Savitha, S. Selvasekarapandian, C.S. Ramya, M.S. Bhuvaneswari, G. Hirankumar, R. Baskaran, P.C. Angelo, Journal of Power Sources, 157 (2006) 533-536.