Carbon Nanotubes Synthesis by Chemical Vapor Deposition of Methane over Zn – Fe Mixed Catalysts Supported on Alumina

Document Type: Research Paper

Authors

School of Chemistry, College of Science, University of Tehran, Tehran, Iran

10.7508/jns.2014.03.002

Abstract

Carbon nanotubes were synthesized over a series of Zn-containing Fe/alumina catalysts by chemical vapor deposition method at two reaction temperatures of 850 and 950 °C using methane as a carbon source. Catalysts were synthesized by keeping Fe concentration constant and varying Zn concentration to study the effects of Zn. The catalysts were characterized using X – ray powder diffraction and N2 adsorption – desorption methods which confirmed the successful synthesis of catalysts and metals particles were inserted in alumina pores. The synthesized Carbon nanotubes were tested by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetry analysis (TGA) and Raman spectroscopy. SEM images showed that the diameter of nanotubes almost was decreased with increasing Zn content of catalysts. In Raman spectroscopy, two main bands related to the carbon nanotubes were observed. Further, TGA results revealed that the percent of synthesized carbon nanotubes were almost increased with increasing [Zn]/[Fe] proportions.

Keywords


[1] S. Iijima,  nature. 354 (1991) 56-58.

[2] M.L. Terranova, V. Sessa, M. Rossi,  Chem. Vap. Deposition. 12 (2006) 315-325.

[3] A. Magrez, J.W. Seo, R. Smajda, M. Mionić, L. Forró, Materials. 3 (2010) 4871-4891.

[4] V. Jourdain, C. Bichara, Carbon. 58 (2013) 2-39.

[5] Ç. Öncel, Y. Yürüm, Fuller. Nanotub. CarbonNanostruct. 14 (2006) 17-37.

[6] X. Fu, X. Cui, X. Wei, J. Ma, App. Surf. Sci. 292 (2014) 645-649.

[7] F. Taleshi, Fuller. Nanotub. CarbonNanostruct. 22 (2014) 921-927.

[8] S. Pooperasupong, B, Caussat, P. Serp, S. Damronglerd, J. Chem. Eng. Jpn. 47 (2014) 28-39.

[9] R. Xie, G. Zhong, C. Zhang, B. Chen, C.S. Esconjauregui, J. Robertson, J. App. Phys. 114 (2013) 244-302.

[10] S.B. Sinnott,  R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, F. Derbyshire, Chem. Phys. Lett. 315 (1999) 25-30.

[11] W. Zhou, L. Ding, Liu, J Nano Res. 2 (2009) 593-598.

[12] J. Wen, W. Chu, C. Jiang, D. Tong, J. Nat. Gas Chem. 19 (2010) 156-160.

[13] D.L. Cursaru, D. Enescu, D. Ciuparu, Rev. Chim. 62 (2011) 792-798.

[14] H, Patel, L.M. Manocha, S. Manocha, j. Nano. Nanotechol- Asia. 2 (2012) 66-75.

[15] M.A. Pasha, A. Shafiekhani, M.A. Vesaghi, Appl. Surf. Sci. 256 (2009) 1365-1371.

[16] W.M. Yeoh, K.Y. Lee, S.P. Chai, K.T. Lee, A.R. Mohamed, J. Phys. Chem. Solids. 74 (2013) 1553-1559.

[17] N. Arnaiz, M.F. Gomez-Rico, I. Martin Gullon, R. Font, Ind. Eng. Chem. Res. 52 (2013) 14847-14854.

[18] S.L. Pirard, A. Delafosse, D. Toye, J.P. Pirard, Chem. Eng. J. 232 (2013) 488-494.

[19] S. Taş, F. Okyay, M. Sezen, H. Plank, Y. Yürüm, Fuller. Nanotub. CarbonNanostruct. 21 (2013) 311-325.

[20] P. Zarabadi-Poor, A. Badiei, A. Yousefi, B, Fahlman, A. Abbasi, Cata. Today. 150 (2010) 100-106.

[21] J. Kong, A.M. Cassell, H.Dai, Chem. Phys. Lett. 292 (1998) 567-574.

[22] I. Abdullahi, N. Sakulchaicharoen, J.E. Herrera, Diamond Relat. Mater. 41 (2014) 84-93.

[23] S. Lim, N. Li, F. Fang, M. Pinault, C. Zoican, C. Wang, T. Fadel, L.D. Pfefferle, G.L. Haller, J. Phys. Chem. C. 112 (2008) 12442-12454.

[24] M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Carbon. 40 (2002) 2043-2061.

[25] L. Lafi, D. Cossement, R. Chahine, Carbon. 43 (2005) 1347-1357.