Preparation of Novel Thin-Film Composite Nanofiltration Membranes for Separation of Amoxicillin

Document Type: Research Paper

Authors

1 Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran , Department of Carpet, Faculty of Architecture & Art, University of Kashan, Kashan, Iran

2 Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran , Young Researchers Club, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran

3 Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran

10.7508/jns.2014.02.010

Abstract

Several novel composite membranes were prepared to separate and recycle amoxicillin from pharmaceutical wastewater via nanofiltration process. The synthesis of these membranes included three stages: 1- preparation of polysulfone ultrafiltration membranes as a support via phase separation process, 2- modification of its surface by interfacial polymerization as a selective layer (polyamide), and 3- self-assembly of TiO2 nanoparticles on the selective layer as an anti-fouling agent. The rejection of all nanofiltration membranes was more than 99% and only its flux was changed proportional to different conditions. In the presence and absence of TiO2 nanoparticles, the pure water flux of polyamide thin-film membrane also obtained 44.4 and 38.4 L/h.m2 at 4 bar pressure, respectively. These were equal to 34 L/h.m2 for amoxicillin solutions. The results showed that TiO2 nanoparticles increased hydrophilicity of polyamide selective layer and therefore, nanoparticles decreased the fouling level. SEM images illustrated the excellent establishment of polyamide layer and distribution of TiO2 nanoparticles on the selective layer. The properties of membrane surface were taken into consideration by using AFM, indicating the increment of surface roughness with interfacial polymerization and TiO2 nanoparticles self-assembly. The pore size of membranes was in the nanoscale (2.653 and 2.604 nm without and with TiO2 nanoparticles self-assembly, respectively)

Keywords


[1] M.C. Moreno-Bondi, M.D. Marazuela, S. Herranz, E. Rodriguez, Anal. Bioanal. Chem. 395 (2009) 921–946.

[2] A.D. Zucker, M. Levy, The relationship between antimicrobial consumption and human emerging infectious disease, Proceeding of concersium for conservation medicine (2009) 33–35.

[3] R. Lindberg, P.-Å. Jarnheimer, B. Olsen, M. Johansson, M. Tysklind, Chemosphere 57 (2004) 1479–1488.

[4] W.S. Adriano, V. Veredas, C.C. Santana, L.R.B. Gonçalves, Biochem. Eng. J. 27 (2005) 132–137.

[5] E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, Water Res. 43 (2009) 2419–2430.

[6] E.S. Elmolla, M. Chaudhuri, J. Hazard. Mater. 172 (2009) 1476–1481.

[7] R. Andreozzi, M. Canterino, R. Marotta, N. Paxeus, J. Hazard. Mater. 122 (2005) 243–250.

[8] F.J. Real, F.J. Benitez, J.L. Acero, G. Roldán, J. Environ. Sci. Health, Part A 47 (2012) 522–533.

[9] L.P. Raman, M. Cheryan, N. Rajagopalan, Chem. Eng. Prog. 90[3] (1994) 68-74.

[10] J. Cadotte, R. Forester, M. Kim, R. Petersen, T. Stocker, Desalination 70 (1988) 77-88.

[11] P. Eriksson, J. Membr. Sci. 36 (1988) 297-313.

[12] A.H. Hassani, R. Mirzayee, S. Nasseri, M. Borghei, M. Gholami, B. Torabifar, Int. J. Environ. Sci. Tech. 5[3] (2008) 401-408.

[13] G. Masmoudi, R. Trabelsi, E. Ellouze, R.B. Amar, Int. J. Environ. Sci. Tech. (2013) DOI 10.1007/s13762-013-0303-3.

[14] B. Van der Bruggen, C. Vandecasteele, Environ. Pollut. 122 (2003) 435–445.

[15] A. Rahimpour, M. Jahanshahi, N. Mortazavian, S.S. Madaeni, Y. Mansourpanah, Appl. Surf. Sci. 256 (2010) 1657–1663.

[16] T.M. Patel, K. Nath, Int. J. Environ. Sci. Tech. (2013) DOI 10.1007/s13762-013-0283-3.

[17] C.M. Kao, Int. J. Environ. Sci. Tech. 11 (2014) 149–158.

[18] L. Lianchao, W. Baoguo, T. Huimin, C. Tianlu, X. Jiping, J. Membr. Sci. 269 (2006) 84-93.

[19] S. Veríssimo, K.V. Peineman, J. Bordado, J. Membr. Sci. 279 (2006) 266-275.

[20] M.R. Teixeira, M.J. Rosa, M. Nystrӧm, J. Membr. Sci. 265 (2005) 160-166.

[21] R. Du, J. Zhao, J. Membr. Sci. 239 (2004) 183-188.

[22] B.-H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, J. Membr. Sci. 294 (2007) 1–7.

[23] K.P. Lee, T.C. Arnot, D. Mattia, J. Membr. Sci. 370 (2011) 1-22.

[24] K. Košutić, D. Dolar, D. Ašperger, B. Kunst, Sep. Purif. Technol. 53 (2007) 244–249.

[25] J. Radjenović, M. Petrović, F. Ventura, D. Barceló, Water Res. 42 (2008) 3601–3610.

[26] M.A. Zazouli, H. Susanto, S. Nasseri, M. Ulbricht, Water Res. 43 (2009) 3270–3280.

[27] F.J. Benitez, J.L. Acero, F.J. Real, G. Roldán, E. Rodriguez, J. Chem. Technol. Biotechnol. 86 (2011) 858–866.

[28] A. Shahtalebi, M.H. Sarrafzadeh, M.M. Montazer Rahmati, Iran. J. Environ. Health Sci. Eng. 8[2] (2011) 109-116.

[29] R. Field, Membranes for Water Treatment, Volume 4, Chapter 1, In K.-V. Peinemann and S. Pereira Nunes (Ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.

[30] S.A. Avlonitis, K. Kouroumbas, N. Vlachakis, Desalination 157 (2003) 151-158.

[31] H.K. Shon, S. Vigneswaran, I.S. Kim, J. Cho, H.H. Ngo, J. Membr. Sci. 234 (2004) 111-120.

[32] J.H. Li, Y.Y. Xu, L.P. Zhu, J.H. Wang, C.H. Du, J. Membr. Sci. 326 (2009) 659–666.

[33] A. Simon, L.D. Nghiem, P. Le-Clech, S.J. Khan, J.E. Drewes, J. Membr. Sci. 340 (2009) 16–25.

[34] A.D. Sabde, M.K. Trivedi, V. Ramachandhran, M.S. Hanra, B. Misra, Desalination 114 (1997) 223–232.

[35] C. Causserand, S. Rouaix, A. Akbari, P. Aimar, J. Membr. Sci. 238 (2004) 177–190.

[36] M. Mulder, Basic principles of membrane technology, Kluwer Academic Publishers, Dordrecht, 1997.

[37] C. Wu, S. Zhang, D. Yang, X. Jian, J. Membr. Sci. 326 (2009) 429–434.

[38] P.S. Singh, S.V. Joshi, J.J. Trivedi, C.V. Devmurari, A. Prakash Rao, P.K. Ghosh, J. Membr. Sci. 278 (2006) 19–25.

[39] R. Derakhsheshpoor, M. Homayoonfal, A. Akbari, M.R. Mehrnia, J. Environ. Health Sci. Eng. 11[9] (2013).

[40] W. Zhang, G. He, P. Gao, G. Chen, Sep. Purif. Technol. 30 (2003) 27–35.