Evaluation of the Aromaticity of a Non-Planar Carbon Nano-Structure by Nucleus-Independent Chemical Shift Criterion: Aromaticity of the Nitrogen- Doped Corannulene

Document Type: Research Paper

Authors

Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran.

10.7508/jns.2014.02.004

Abstract

Substitution of two or four carbon atoms by nitrogen in the corannulene molecule as a carbon nanostructure was done and the obtained structures were optimized at MP2/6-31G(d) level of theory. Calculations of the nucleus-independent chemical shift (NICS) were performed to analyze the aromaticity of the corannulene rings and its derivatives upon doping with N at B3LYP/6-31G(d) level of theory. Results showed NICS values in six-membered and five-membered rings of two and four N atoms doped corannulene are different and very dependent to number and position of the N atoms. The values of the mean NICS of all N-doped structures are more positive than intact corannulene that show insertion of N atom to the structures causes to decreasing aromaticity of them.

Keywords


[1] M. Elango, R. Parthasarathi, G. Karthik Narayanan, A.M. Sabeelullah, U. Sarkar, N. Venkatasubramaniyan, V. Subramanian, P. Chattaraj, J. Chem. Sci.117 (2005) 61-65.

[2] A.R. Katritzky, M. Karelson, S. Sild, T.M. Krygowski, K. Jug, J. Org. Chem. 63 (1998) 5228-5231.

[3] P. von Ragué Schleyer, H. Jiao, N. van Eikema Hommes, V. Malkin, O. Malkina, J. Am. Chem. Soc. 119 (1997) 12669-12670.

[4] Z. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P.v.R. Schleyer, Chem. Rev. 105 (2005) 3842-3888.

[5] J.O.C. Jiménez-Halla, E. Matito, J. Robles, M. Solà, J. Organometall. Chem. 691 (2006) 4359-4366.

[6] A. Stanger, J. Org. Chem. 71 (2006) 883-893.

[7] P.v.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N.J.v.E. Hommes, J. Am. Chem. Soc. 118 (1996) 6317-6318.

[8] R. Gershoni-Poranne, C.M. Gibson, P.W. Fowler, A. Stanger, J. Org. Chem. 78 (2013) 7544-7553.

[9] T. Krygowski, M. Cyranski, Z. Czarnocki, G. Häfelinger, A.R. Katritzky, Tetrahedron, 56 (2000) 1783-1796.

[10] N.S. Mills, K.B. Llagostera, J. Org. Chem. 72 (2007) 9163-9169.

[11] W.E. Barth, R.G. Lawton, J. Am. Chem. Soc. 88 (1966) 380-381.

[12] A.Y. Rogachev, A.S. Filatov, A.V. Zabula, M.A. Petrukhina, Phys. Chem. Chem. Phys. 14 (2012) 3554-3567.

[13] M.V. Frash, A.C. Hopkinson, D.K. Bohme, J. Am. Chem. Soc. 123 (2001) 6687-6695.

[14] P.A. Denis, J. Mol. Struct. THEOCHEM, 865 (2008) 8-13.

[15] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr, T. Vreven, K. Kudin, J. Burant, J. Millam, S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, Cossi M, G. Scalmani, N. Rega, G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. Knox, H. Hratchian, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Ayala, K. Morokuma, G. Voth, P. Salvador, J. Dannenberg, V. Zakrzewski, S. Dapprich, A. Daniels, M. Strain, O. Farkas, D. Malick, A. Rabuck, K. Raghavachari, J. Foresman, J. Ortiz, Q. Cui, A. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Martin, D. Fox, T. Keith, M. Al-Laham, C. Peng, A. Nanayakkara, M. Challacombe, P. Gill, B. Johnson, W. Chen, M. Wong, C. Gonzalez, J. Pople, Gaussian 03, Revision E. 01. Wallingford CT: Gaussian, Inc.(http://www. gaussian. com), (2004)

[16] A. Frisch, H. Hratchian, R. Dennington, A. Todd, T. Keith, J. Millam, GaussView 5, 2009.

[17] K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251-8260.

[18] K. Kavitha, M. Manoharan, P. Venuvanalingam, J. Org. Chem. 70 (2005) 2528-2536.