An Efficient Pd-Sn Catalyst Supported on MWNTs for Hydrogenation of High Concentrated Acetylene Feedstocks: The Potential Role of Isolated Adsorption Site

Document Type: Research Paper

Authors

1 Department of Chemical Engineering, Birjand University of Technology, P.O. Box 97175/569, Birjand, Iran.

2 Nano Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 18745/4163, Tehran, Iran.

10.7508/jns.2014.02.002

Abstract

In the present study, tin-promoted Pd/MWNTs nanocatalystwas synthesized via polyol technique for application in hydrogenation of high-concentrated acetylene feedstocks. TEM images showed a restricted distribution of nanoparticles in the range of 3-5 nm. The results indicated that nanoparticles sizes were resistant to further catalyst deactivation. XRD patterns signified alloying between Pd and Sn which contained a high percentage of ordered intermetallic structures (70.8%), as confirmed by XPS. According to the results, pore blocking and/or fouling was known as the main reasons of the catalyst deactivation. Here, we supposed a novel deactivation mechanism based on which dehydrogenation susceptibility of carbonaceous species (green oil) played a significant role in the formation of the isolated adsorption sites and then, catalyst deactivation.

Keywords


[1] J. Panpranot, K. Kontapakdee, P. Praserthdam, Appl. Catal. A 314 (2006) 128-133.

[2] B. Ngamsom, N. Bogdanchikova, M.A. Borja, P. Praserthdam, Catal. Commun. 5 (2004) 243-248.

[3] K.R. Hall, J.A. Bullin, P.T. Eubank, A. Akgerman, R.G. Anthony, US Patent 6,323,247.

[4] A. Mamadov, S. Al-Wahabi, A. Al-Alwan, US patent 8,158,837 B2.

[5] A. Alkhawaldeh, X. Wu, R.G. Anthony, Catal. Today 84 (2003) 43-49.

[6] D.L. Trimm, I.O.Y. Liu, N.W. Cant, J. Mol. Catal. A 288 (2008) 63-74.

[7] K. Kovnir, J. Osswald, M. Armbruster, D. Teschner, G. Weinberg, U. Wild, A. Knop-Gericke, T. Ressler, Y. Grin, R. Schlogl, J. Catal 264 (2009) 93-103.

[8]  K. Kovnir, M. Armbruster, D. Teschner, T.V. Venkov, F.C. Jentoft, A. Knop-Gericke, Y. Grin, R. Schlogl, Sci. Tech. Adv. Mater. 8 (2007) 420-427.

[9] A. Borodzinski, A. Golebiowski, Langmuir 13 (1997) 883-887.

[10] A.S. McLeod, R. Blackwell, Chem. Eng. Sci. 59 (2004) 4715-4721.

[11] P. Albers, J. Pietsch, S.F. Parker, J. Mol. Catal. A 173 (2001) 275-286.

[12] C.H. Bartholomew, Appl. Catal. A 212 (2001) 17-60.

[13] P.G. Menon, Chem. Rev. 94 (1994) 1021-1046.

[14] P.G. Menon, J. Mol. Catal. 59 (1990) 207-220.

[15] Y. Azizi, C. Petit, V. Pitchon, J. Catal. 256 (2008) 338-344.

[16] A. Fasi, J.T. Kiss, B. Torok, I. Palink, Appl. Catal. A 200 (2000) 189-200. 

[17] P. Serp, M. Corrias, P. Kalck, Appl. Catal. A 253 (2003) 337-358.

[18] H. Bazzazzadegan, M. Kazemeini, A.M. Rashidi, Appl. Catal. A 399 (2011) 184-190.

[19] G.U. Sumanasekera, J.L. Allen, S.L. Fang, A.L. Loper, A.M. Rao, P.C. Eklund, J. Phys. Chem. B 103 (1999) 4292-4297.

[20] M. Iurlo, D. Paolucci, M. Marcaccio, F. Paolucci, Chem. Commun. 40 (2008) 4867-4874.

[21] H. Ma, L. Wang, L. Chen, C. Dong, W. Yu, T. Huang, Y. Qian, Catal. Commun. 8 (2007) 452-456.

[22] M.A. Fraga, E. Jordao, M.J. Mendes, M.M.A. Freitas, J.L. Faria, J.L. Figueiredo, J. Catal. 209 (2002) 355-364.

[23] J.C. Duchet, E.M.V. Oers, V.H.J.D. Beer, R. Prins, J. Catal. 80 (1983) 386-402.

[24] P. Arnoldy, E.M.V. Oers, V.H.J.D. Beer, J.A. Moulijn, R. Prins, Appl. Catal. 48 (1989) 241-252.

[25] V.H.J.D. Beer, F.J. Derbyshire, C.K. Groot, R. Prins, A.W. Scaroni, M. Solar, Fuel 63 (1984) 1095-1100.

[26] A.V. Scaroni, R.G. Jenkins, P.L. Walker, Appl. Catal. 14 (1985) 173-183.

[27] W.G. Augustyn, R.I. MCrindle, N.J. Coville, Appl. Catal. A 388 (2010) 1-6.

[28] F. Rodriguez-Reinoso, Carbon 36 (1998) 159-175.

[29] A. Hammoudeh, S. Mahmoud, J. Mol. Catal. A 203 (2003) 231-239.

[30] J.P. Dath, W. Vermeiren, US patent 7,294,604 B2.

[31] R. Arasteh, M. Masoumi, A.M. Rashidi, I. Moradi, V. Samimi, S.T. Mostafavi, Appl. Surf. Sci. 256 (2010) 4447-4455.

[32] E. Esmaeili, Y. Mortazavi, A.A. Khodadadi, A.M. Rashidi, M. Rashidzadeh, Appl. Surf. Sci. 263 (2012) 513-522.

[33] P. Praserthdam, B. Ngamsom, N. Bogdanchikova, S. Phatanasri, M. Pramotthana, Appl. Catal. A 230 (2002) 41-51.

[34] R.M. Modibedi, T. Masombuka, M.K. Mathe, Int. J. Hydrogen Energy 36 (2001) 4664-4672.

[35] A.F. Lee, C.J. Baddeley, M.S. Tikhov, R.M. Lambert, Surf. Sci. 373 (1997) 195-209.

[36] J. Arana, P.R.D.L. Piscina, J. Llorca, J. Sales, N. Homs, Chem. Mater. 10 (1998) 1333-1342.

[37] F. Geobaldo, G. Spoto, S. Bordig, C. Lamberti, A. Zecchina, J. Chem. Soc. Faraday Trans. 93 (1997) 1243-1249.

[38] A. Dogan, G. Siyakus, F. Severcan, Food Chem. 100 (2007) 1106-1114.

[39] R.B. Moyes, D.W. Walker, P.B. Wells, D.A. Whan, Appl. Catal. 55 (1989) L5-L8.

[40] A.S. McLeod, L.F. Gladden, J. Chem. Phys. 110 (1999) 4000-4008.

[41] Y.K. Park, F.H. Ribeiro, G.A. Somorjai, J. Catal. 178 (1998) 66-75.

[42] R.D. Cortright, P.E. Levin, J.A. Dumesic, Ind. Eng. Chem. Res. 37 (1998) 1717-1723.

[43] Z. Nawaz, X. Tang, Y. Wang, F. Wei, Ind. Eng. Chem. Res. 49 (2010)1274-1280.

[44] M.P. Lobera, C. Tellez, J. Herguido, M. Menendez, Appl. Catal. A 349 (2008) 156-164.

[45] P. Praserthdam, N. Grisdanurak, W. Yuangsawatdikul, Chem. Eng. J. 77 (2000) 215-219.

[46] M. Larsson, M. Hulten, E.A. Blekkan, B. B. Andersson, J. Catal. 164 (1996) 44-53.

[47] G. Aguilar-Rios, P. Salas, M.A. Valenzuela, H. Armendariz, J.A. Wang, J. Salmones, Catal. Lett. 60(1999) 21-25.