Antimicrobial Activity and Photocatalytic Degradation Properties of Zinc Sulfide Nanoparticles Synthesized by Using Plant Extracts

Document Type: Research Paper

Authors

1 Department of Electronics, Nehru arts and science college, Coimbatore, Tamilnadu, India

2 Department of Electronics, Erode arts and science college, Erode, Tamilnadu, India

Abstract

Biological synthesis of zinc sulfide (ZnS) nanoparticles (NPs) was prepared by a simple co-precipitation method using methanol plant extracts of Tridax procumbens, Phyllanthusniruri, and Syzygium aromaticum. The as-prepared ZnS NPs was examined by several physiochemical techniques such as X-Ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), UV-Visible spectroscopy, Fourier Transform infrared spectroscopy analysis (FTIR). The disk diffusion method was used to screen the antimicrobial activity of Pure and Plant extracts doped ZnS NPs against different gram positive, gram-negative bacteria and fungus culture. From this investigation synthesized ZnS NPs have a potential antimicrobial agent where showed a hot zone of inhibition (ZOI) at different concentration against all tested microorganisms. Biosynthesized ZnS NPs Photocatalytic degradation also evaluated for Methylene Blue Dye (MBD) and Methyl Orange Dye (MOD) degradation in aqueous solution under UV Light irradiation. Due to the smaller particles size, narrowing optical band gap and antimicrobial properties of synthesised ZnS NPs were improve the photocatalytic activity. Here we first time reported Syzygium aromaticum methanol extracts ZnS NPs exhibited excellent efficiency in Methylene Blue Dye (MBD) and Methyl Orange Dye (MOD) degradation with comparing other ZnS NPs.

Keywords


1. Wang L, Xudong X, Yuan X. Preparation and photoluminescent properties of doped nanoparticles of ZnS by solid-state reaction. J. Lumi., 2010; 130(1): 137–140.
2. Deng Z, Qi J, Zhang Y, Qingliang L, Huang Y. Growth mechanism and optical properties of ZnS nanotetrapods. J. Nanote., 2007; 18(1): 01-04.
3. Biswas S, Soumitra K. Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. J. Nanote., 2008; 19(1): 01-11.
4. Yu SH, Yoshimura M. Shape and Phase Control of ZnS Nanocrystals: Template Fabrication of Wurtzite ZnS Single-Crystal Nano sheets and ZnO Flake-like Dendrites from a Lamellar Molecular Precursor ZnS (NH2 CH2 CH2 NH2)0.5. J. Adv. Mate., 2002; 14(4): 296-300.
5. Hengzhong Z, Banfield JF. Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations. J. Nano lett., 2004; 4(4): 713-718.
6. Moore D, Ronning C, Christopher M, Wang ZL. Wurtzite ZnS nanosaws produced by polar surfaces. J. Chem. Phys. Lett, 2004; 385(1): 08–11.
7. Masoud Salavati N, Mohammad Reza LE, Fatemeh D. Controllable synthesis of wurtzite ZnS nanorods through simple hydrothermal method in the presence of thioglycolic acid. J. Allo. Comp., 2009; 475: 782–788.
8. Masoud Salavati N, Fatemeh D, Mazaheri M. Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis(salicylidene)zinc(II)]. J. Allo. Comp., 2009; 470: 502–506.
9. Liu JZ, Yan PX, Yue GH. Synthesis of doped ZnS one-dimensional nanostructures via chemical vapor deposition. J. Mate. Lett., 2006; 60: 3471–3476.
10. Wei A, Liu J, Zhuang M. Preparation and characterization of ZnS thin films prepared by chemical bath deposition. Mate. Scie. Semi. Proc., 2013; 16: 1478–1484.
11. Wang X, Shi J, Feng Z, Li M, Li C. Visible emission characteristics from different defects of ZnS nanocrystals. Phys. Chem. Chem. Phys., 2011; 13(10): 4715–4723.
12. Sujata Devi L, K Nomita Devi K. Effect of Mn+2 doping on structural, morphological and optical properties of ZnS nanoparticles by chemical co-precipition method. J. Appl. Phys., 2014; 6(2): 06-14.
13. Zhang D, Limin Q, Cheng H, Jiming M. Preparation of ZnS Nanorods by a Liquid Crystal Template. J. Coll. Inte. Scie., 2002; 246: 413–416.
14. Hong Liao X, Jie Zhu J, Yuan Chen H. Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Mate. Scie. Engi., 2001; 85: 85–89.
15. Zhu J, Zhou M, Xu J, Liao X. Preparation of CdS and ZnS nanoparticles using microwave Irradiation. Mate. Lett., 2001; 47: 25–29.
16. Ying Lu H, Yuan Chu S, Seng Tan S. The Low-Temperature Synthesis and Optical Properties of Near-White Light Emission Nanophosphors Based on Manganese-Doped Zinc Sulfide. Jpn. J. Appl. Phys., 2005; 44(7): 5282–5288.
17. Kovtyukhov NI, Buzaneva EV, Waraksa CC, Mallouk TE. Ultrathin nanoparticle ZnS and ZnS: Mn films: surface sol–gel synthesis, morphology, photophysical properties. Mate. Scie. Engi., 2000; 69: 411–417.
18. Sobhani A, Masoud Salavati N, Sobhani M. Synthesis, characterization and optical properties of mercury sulfides and zinc sulfides using single-source precursor. Mate. Scie. Semi. Proc., 2013; 16: 410–417.
19. Masoud Salavati N, Davar F. Controllable synthesis of thioglycolic acid capped ZnS(Pn)0.5 nanotubes via simple aqueous solution route at low temperatures and conversion to wurtzite ZnS nanorods via thermal decompose of precursor. J. Allo. Comp., 2010; 494: 199–204.
20. Yu Zhou T, Quan Xin X. Room temperature solid-state reaction a convenient novel route to nanotubes of zinc sulfide. J. Nano Tech., 2004; 15: 534–536.
21. Wang L, Hong Y. A new preparation of zinc sulfide nanopartiles by solid state method by room temperature. Mate. Rese. Bull., 2000; 35: 695-701.
22. Zhao Q, Hou L, Huang R. Synthesis of ZnS nanorods by a surfactant-assisted soft chemistry method. Inor. Chem. Comm., 2003; 6: 971-973.
23. Kulkarni SK, Winkler U, Deshmukh N. Investigations on chemically capped CdS, ZnS and ZnCdS nanoparticles. Appl. Surf. Scie., 2001; 169: 438- 446.
24. Nizamoglu S, Ozel T, Sari E, Demir H. White Light Generation Using CdSe/ZnS Core–Shell Nanocrystals Hybridized with InGaN/GaN Light Emitting Diodes. Int. J. Nano tech., 2007; 18: 65-70.
25. Bouhafs D, Moussi A, Chikouche A, Ruiz J. Design and Simulation of Antireflection Coating Systems for Optoelectronic Devices: Application to Silicon Solar Cells. J. Sola. Ener. Mate. Sola. Cell., 1998; 52: 79-93.
26. Oladeji O, Chow L. Synthesis and Processing of CdS/ZnS Multilayer Films for Solar Cell Application. Thin Soli. Film., 2005; 474: 77-83.
27. Gang Chen Z, Cheng L, Yi Xu H, Zi Liu J. ZnS Branched Architectures as Optoelectronic Devices and Field Emitters. J. Adva. Mate., 2010; 22: 2376-2380.
28. Mirov SB, Fedorov W, Graham K, Moskalev I, Badikov V, Panyutin V. Erbium Fiber Laser–Pumped Continuous-Wave Microchip Cr2+:ZnS and Cr2+:ZnSe Lasers. J. Opti. Lett., 2002; 27: 909-911.
29. Sorokina T, Sorokin E, Mirov S, Fedorov V, Badikov V, Panyutin V. Broadly Tunable Compact Continuous-Wave Cr2+: ZnS. Lase. Opti. Lett., 2002; 27: 1040-1042.
30. Moore D, Wang Z. Growth of Anisotropic One-Dimensional ZnS Nanostructures. J. Mate. Chem., 2006; 16: 3898-3905.
31. Han J, Zhang W, Chen W, Thamizhmani L. Far- Infrared Characteristics of ZnS Nanoparticles Measured by Terahertz Time- Domain Spectroscopy. J. Phys. Chem., 2006; 110: 1989- 1993.
32. Wu P, Miao L, Wang H, Shao X, Yan X. A Multidimensional Sensing Device for the Discrimination of Proteins Based on Manganese Doped ZnS Quantum Dots. Angew. Chem. Int. Edi., 2011; 50: 8118- 8121.
33. Tran PT, Goldman ER, Anderson GP. Use of Luminescent CdSe–ZnS Nanocrystal Bio conjugates in Quantum Dot-Based Nanosensors. J. Phys. Stat. Sol., 2002; 229(1): 427–432.
34. Zhang H, Chen X, Li Z, Kou J, Yu T, Zou Z. Preparation of Sensitized ZnS and its Photocatalytic Activity Under Visible Light irradiation. J. Phys. D: Appl. Phys., 2007; 40: 6846-6849.
35. Yen Lu M, Juann Chen L.Tunable electric and magnetic properties of CoxZn1−xS nanowires. J. Appl. Phys. Lett., 2008; 93: 01-05.
36. Rema Devi BS, Raveendran R, Vaidyan AV. Synthesis and Characterization of Mn2+-Doped ZnS Nanoparticles. Pram. J. Phys., 2007; 68: 679-687.
37. Manzoor K, Vadera SR, Kumar N. Multicolor Electroluminescent Devices Using Doped ZnS Nanocrystals. J. Appl. Phys. Lett., 2004; 84: 284-286.
38. Sathishkumar M, Saroja M. Antimicrobial activity of zinc sulphide nanoparticles and to study their characterization. Elix. Elec. Engg., 2016; 101:44118-44121.
39. Dong Seok Y, Hee Jae K. Local Structural Analysis for Mn-Doped ZnO Dilute Magnetic Semiconductors. Jpn. J. Appl. Phys., 2013; 52(10): 75-81.
40. Priyadharsini N, Elango M, Vairam S, Thamilselvan M. Effect of nickel substitution on structural, optical, magnetic properties and photocatalytic activity of ZnS nanoparticles. J. Mate. Scie. Semi. Proc., 2016; 49: 68–75.
41. Amir GR, Fatahian S, Kianpour N. Investigation of ZnS nanoparticle antibacterial effect. J. Curr. Nano Scie., 2014; 10: 796–800.
42. Jinfeng C, Binjie H, Jinhu Z. Optical and photocatalytic properties of Corymbia citriodora leaf extract synthesized ZnS Nanoparticles. Phys. E: Low dime. Syst. Nano Stru., 2016; 79:103-106.
43. Mirzadeh S, Darezereshki E, Bakhtiari F. Characterization of zinc sulfide (ZnS) nanoparticles Biosynthesized by Fusarium oxysporum. J. Mate. Scie. Semi. Proc., 2013;16 : 374–378.
44. Senapati US, Sarkar D. Structural, Optical, Thermal and Electrical properties of Fungus guided Biosynthesized Zinc Sulphide Nanoparticles. Rese. J. Chem. Scie., 2015; 5(1): 33-40.
45. Senapati US, Jha DK, Sarkar D. Structural, spectral and electrical properties of green synthesized ZnS nanoparticles using Elaeocarpus floribundus leaf extract. J. Mate. Scie. Mate. Elec., 2015; 8: 160-168.
46. Sathishkumar M, Saroja M. Biosynthesis and Characterization of Zinc Sulphide Nanoparticles using Leaf Extracts of Tridaxprocumbens. Orie. J. Chem., 2017; 33(2): 903-909.
47. Sathishkumar M, Saroja M. Characterization and antimicrobial activity of biosynthesised Zinc Sulphide Nanoparticles using phyllanthusniruri plant extract. Int. J. Chem. Scie., 2017; 5(2):123-131.
48. M Sathishkumar, M.Saroja. Green Synthesis, Characterization and Antimicrobial activity of ZnS using Syzygium aromaticum extract. Int. J. chemTech. Rese., 2017; 10(9): 443-449.
49. Subramanian R, Subbramaniyan P. Double bypasses soxhlet apparatus for extraction of piperine from Piper nigrum. Arab. J. Chem., 2016; 9: 537–540.
50. Krishan R, Kandasamy G. An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel., 2014; 116: 103–108.
51. John DT, James HJ. Antimicrobial Susceptibility testing: General Considerations. Manual of Clinical Microbiology, 7th edition, 2004.
52. Lalitha MK. Manual on Antimicrobial Susceptibility Testing, 2004.
53. Chen Y, Ma Q, Hanxiang J, Wang Y. Hydrothermal synthesis of ZnS microspheres with highly effective photocatalytic and antibacterial properties. J. Mate. Scie. Mate. Elec., 2016; 27(10):10237-10243.
54. Tauc J. Optical properties and electronic structure of amorphous Ge and Si. J. Mate. Rese. Bull. 1968; 3: 37–46.
55. Lellala K, Namratha K. Sol-gel assisted hydrothermal synthesis and characterization of hybrid ZnS-RGO nanocomposite for efficient photodegradation of dyes. J. Allo. Comp., 2016; 30:1-11
56. Brenda K, Wesley O, Nathan O. Synthesis, characterization and antimicrobial activity of ZnS nanoparticles. Ind. J. Nano., 2016; 4 (2): 1-6.