Synthesis and Characterization of Graphene-ZnO Nanocomposite and its Application in Photovoltaic Cells

Document Type: Research Paper

Authors

1 Dept. of Nanotechnology Engineering, Tarbiat Modares University, Tehran, Iran

2 Dept. of Electrical & Computer Engineering, Tarbiat Modares University, Tehran, Iran

3 Dept. of Physics, K.N.Toosi University of Technology, Tehran, Iran

10.7508/jns.2013.04.010

Abstract

In this paper, we present a simple method for preparation of graphene-ZnO nanocomposites (G-ZnO). The method is based on thermal treatment of the graphene oxide (GO)/ZnO paste which reduces the graphene oxide into the graphene and leads to the formation of the G-ZnO nanocomposite. The structure, morphology and optical properties of synthesized nanocomposites are characterized with XRD, FESEM, FTIR and Raman spectroscopies. Here CdS quantum dots are deposited on G-ZnO nanocomposite structure and is integrated as a photoanode in CdS quantum dot sensitized solar cells (QDSSCs). Photovoltaic properties of CdS QDSSC based on bare ZnO nanoparticles and G-ZnO nanocomposite photoanodes are studied here. The cell with G-ZnO/CdS photoanode shows two times higher photoelectric conversion efficiency than that of the pure ZnO photoanode (0.94 vs. 0.45).

Keywords


[1] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22 (2010) 3906-3924.

[2] J. Wu, W. Pisula, K. Müllen, Chem. Rev. 107 (2007) 718-747.

[3] F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, Nature Photon. 4 (2010) 611-622.

[4] Y. Wang, Z.S. Feng, J.J. Chen, C. Zhang, Mater. Lett. 71 (2012) 54-56.

[5] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, J. Am. Chem. Soc. 133 (2011) 10878-10884.

[6] S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H. Dommett, G. Evmenenko, S.-E. Wu, S. F. Chen, C. P. Liu, Nano Letters 7 (2007) 1888-1892.

[7] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282-286.

[8] G. Eda, M. Chhowalla, Nano Lett. 9 (2009) 814-818.

[9] C. Xu, X. Wang, J. Zhu, X. Yang, L. Lu, J. Mater. Chem. 18 (2008) 5625-5629.

[10] G. Williams, P.V. Kamat, Langmuir 25 (2009) 13869-13873.

[11] V. Houšková, V. Štengl, S. Bakardjieva, N. Murafa, A. Kalendová, F. Opluštil, J. Phys. Chem. A 111 (2007) 4215-4221.

[12] Y. Li, G. Meng, L. Zhang, F. Phillipp, Appl. Phys. Lett. 76 (2000) 2011-2013.

[13] J. Goldberger, D.J. Sirbuly, M. Law, P. Yang, J. Phys. Chem. B 109 (2005) 9-14.

[14] Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21 (2009) 4087-4108.

[15] N. Goswami, D.K. Sharma, Physica E 42 (2010) 1675-1682.

[16] C. Feldmann, Adv. Funct. Mater. 13 (2003) 101-107.

[17] P.V. Kamat, J. Phys. Chem. C 112 (2008) 18737-18753.

[18] R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Nano Lett. 5 (2005) 865-871.

[19] P.E.P.Q.E. Exceeding, Octavi E  1530-1533.

[20] I. Mora-Seró, S. Gimenez, F. Fabregat-Santiago, R. Gomez, Q. Shen, T. Toyoda, J. Bisquert, Acc. Chem. Res. 42 (2009) 1848-1857.

[21] I. Mora-Seró, J. Bisquert, J. Phys. Chem. Lett. 1 (2010) 3046-3052.

[22] J. Kim, H. Choi, C. Nahm, J. Moon, C. Kim, S. Nam, D.R. Jung, B. Park, J. Power Sources 196 (2011) 10526-10531.

[23] W.S. Hummers Jr, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339-1339.

[24] C. Chen, P. Liu, C. Lu, Chem. Eng. J. 144 (2008) 509-513.

[25] D. Boukhvalov, M. Katsnelson, Phys. Rev. B 78 (2008) 1320-1325.

[26] Y. Chen, Y. Zhang, W. Fu, H. Yang, Q. Tao, Y. Zhang, S. Su, P. Wang, M. Li, Electrochim. Acta (2013) 647-652.

[27] V. Jovanovski, V. González-Pedro, S. Giménez, E. Azaceta, G.n. Cabañero, H. Grande, R. Tena-Zaera, I.n. Mora-Seró, J. Bisquert, J. Am. Chem. Soc. 133 (2011) 20156-20159.

[28] Z. Yang, C.Y. Chen, C.W. Liu, C.L. Li, H.T. Chang, Adv. Energy Mater. 1 (2011) 259-264.

[29] C. Zhang, J. Zhang, Y. Su, M. Xu, Z. Yang, Y. Zhang, Physica E 56 (2014) 251-255.

[30] C. He, T. Sasaki, Y. Shimizu, N. Koshizaki, Appl. Surf. Sci. 254 (2008) 2196-2202.

[31] B. Li, H. Cao, J. Mater. Chem. 21 (2011) 3346-3349.

[32] D. Cai, M. Song, J. Mater. Chem. 17 (2007) 3678-3680.

[33] B. Saravanakumar, R. Mohan, S.J. Kim, Mater. Res. Bull. 48 (2013) 878-883.

[34] B.N. Joshi, H. Yoon, S.H. Na, J.Y. Choi, S.S. Yoon, Ceram. Int. 40 (2014) 3647-3654.

[35] Y.Z. Liu, Y.F. Li, Y.G. Yang, Y.F. Wen, M.Z. Wang, Scripta Mater. 68 (2013) 301-304.

[36] M. Ahmad, E. Ahmed, Z. Hong, N. Khalid, W. Ahmed, A. Elhissi, J. Alloys Compd. 577 (2013) 717-727.

[37] C.H. Hsu, J.R. Wu, L.C. Chen, P.S. Chan, C.C. Chen, Adv. Mater. Sci. Eng. 14 (2014) 312-316