Preparation and Characterization of Tin Oxide Nanowires

Document Type: Research Paper


1 Department of Physics, Faculty of Science, Arak University, Arak 3815688349, Iran

2 Faculty of Ineffective Defense, Malek-e-Ashtar Technical University, Tehran, Iran

3 Department of Physics, Islamic Azad University, North Tehran Branch, Tehran, Iran



The aim of this research is preparation of SnO2 nanowires by means of Thermal chemical reaction vapor transport deposition (TCRVTD) method from SnO powders. The morphology, chemical composition and microstructure properties of the nanowires are characterized using field emission scanning electron microscope (FE-SEM), EDS, and XRD. The XRD diffraction patterns reveal that the SnO2 nanowires have been grown in the form of tetragonal crystal structures with the lattice parameter of a=b=0.440 nm, and c=0.370 nm. The SEM images reveal that SnO2 nanowires have successfully been grown on the Si substrate. The EDS patterns show that only elements of Sn, O and Au are detected. Prior to the VLS process the substrate is coated by a thin layer of Au. The diameter of nanowires is measured to be something between 20-100 nm.


[1] M. C. Johnson, S. Aloni, D. E. McCready, E. D. Bourret-Courchesne, Crystal Growth and Design. 6 (8) (2006) 1936-1941.

[2] E. Comini, Analytica Chimica Acta, 568 (2006) 28–40.

[3] H. Zhaoa, Y. Li, L. Yanga, X. Wua, Materials Chemistry and Physics, 112 (2008) 244–248.

[4] S. Thanasanvorakun, P. Mangkorntong, S. Choopun, N. Mangkorntong, Ceramics International, 34 (2008) 1127–1130.

[5] M.S. Dresselhaus, Y.M. Lin, O. Rabin, M.R. Black, G. Dresselhaus, Nanowires, Springer Handbook of Nanotechnology, (2004) 8–9.

[6] Y. Wu, P. Yang, J. Am. Chem. Soc. 123 (2001) 3165.

[7] R.S. Wagner, W.C.  Ellis, Appl. Phys. Lett. 4 (1964) 89–95.

[8] S.P. Mondal, S.K. Ray, J. Ravichandran, I. Manna, Bull. Mater. Sci. 33 (4) (2010) 357–364.

[9] L. Mazeina, Y.N. Picard, J. D. Caldwell, E. R. Glaser, S.M. Prokes, Journal of Crystal Growth, 311 (2009) 3158–3162.

[10] D. Calestani, M. Zha, G. Salviati, L. Lazzarini, L. Zanotti, Journal of Crystal Growth. 275 (2005) e2083–e2087.

[11] Y. Chen, X. Cui, K. Zhang, D. Pan,  S. Zhang, B. Wang, J.G. Hou, Chemical Physics Letters. 369 (2003) 16–20.

[12] C. Ling, W. Qian, F. Wei, Journal of Crystal Growth, 285 (2005) 49–53.

[13] Z. Cai, J. Li, Ceramics International, 39 Issue 1 (2013) 377–382.

[14]  S.W. Choi, S.H. Jung, S.S. Kim, Journal of Hazardous Materials,  193 (2011) 243–248.

[15] E.M. El-Maghraby,  A. Qurashi, T. Yamazaki, Ceramics International,  39 (7) (2013) 8475–8480.

[16] S. Phadungdhitidhada, S. Thanasanvorakun,  P. Mangkorntong, S. Choopun, N. Mangkorntong, D. Wongratanaphisan, Current Applied Physics, 11(6) (2011) 1368–1373.

[17] S.H. Mohamed, Journal of Alloys and Compounds,  510 (1) (2012) 119–124.

[18] I.S. Hwang, E.B. Lee, S.J. Kim, J.K. Choi, J.H. Cha, H.J. Lee, B.K. Ju, J.H. Lee, Sensors and Actuators B: Chemical,  154 (2) (2011) 295–300.

[19] R. R. Kumar, K. N. Rao, A. R. Phani,  Materials Letters  92 (2013) 243–246.

[20] S.Y. Lee, Y. H. Shin, Y. Kim, Sangdan Kim, S. Ju, Journal of Luminescence  131 Issue 12 (2011) 2565–2568.