Synthesis and Characterization of Carbon Nanotubes Catalyzed by TiO2 Supported Ni, Co and Ni-Co Nanoparticles via CCVD

Document Type: Research Paper

Authors

Department of Physics, University of Mazandaran, Babolsar, Iran.

10.7508/jns.2013.03.009

Abstract

Monometallic and bimetallic Ni and Co catalytic nanoparticles supported on Titanium dioxide (rutile phase) substrate were prepared by wet impregnation method. These nanoparicles were used as catalysts for synthesis of multiwalled carbon nanotubes (MWCNTs) from acetylene decomposition at 700°C by the catalytic chemical vapor deposition (CCVD) technique. The nanomaterials (catalyst and CNTs) were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Raman spectroscopy. In this paper, the usage of TiO2 powder as catalyst support was examined and the effect of applied catalyst type on characteristics of grown CNTs was investigated. The results showed that the rutile phase of TiO2 powder can be applied as a suitable catalyst support in CNT growth process. Furthermore, it was observed that the CNTs synthesized on Ni-Co bimetallic catalyst possess smaller average diameters, better quality and less amorphous carbon compared to Ni and Co monometallic catalyst types.

Keywords


[1] A. Aqel, K.M.M. Abou El-Nour, R.A.A. Ammar, A. Al-Warthan, Arab. J. Chem. 5 (2012) 1–23.

[2] A.C. Dupuis, Prog. Mater. Sci. 50 (2005) 929-961.

[3] M. Paradise, T. Goswami, Mater. Design 28 (2007) 1477-1489.

[4] A. Magrez, J.W. Seo, R. Smajda, M. Mionić and L. Forró, Materials 3 (2010) 4871-4891.

[5] J.W. Ward, B.Q. Wei, and P.M. Ajayan, Chem. Phys. Lett. 376 (2003) 717-725.

[6] J.E. Herrera, D.E. Resasco, J. Catal. 221 (2004) 354-364.

[7] W. Qian, F. Wei, T. Liu, Z.W. Wang, Solid State Commun. 126 (2003) 365-367.

[8] S. Inoue, T. Nakajima, Y. Kikuchi, Chem. Phys. Lett. 406 (2005) 184-187.

[9] R.L. Vander Wala, T.M. Ticichb, V.E. Curtisb, Carbon 39 (2001) 2277-2289.

[10] A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono and J.B. Nagy, Materials 3 (2010) 3092-3140.

[11] A.N. Andriotti, M. Menou, G. Frandakis, Phys. Rev. Lett. 85 (2000) 3193-3196.

[12] S.H.S. Zein, A.R. Mohamed, P.S.T. Sai, Ind. Eng. Chem. Res. 43 (2004) 4864-4870.

[13] A.A. Hosseini, S. Mehralitabar, M. Pashaee, F. Taleshi, Proc. of the 4th International Conference on Nanostructure, Kish Island, Iran (2012) 1296-1298.

[14] K. Zare, M. Ghorannevis, M. Amani Malkeshi, H. Aghaie, Z. Ghorannevis, O. Moradi, Fullerenes, Nanotubes and Carbon Nanostructures 21 (2013) 787-793.

[15] S. Chai, V. M. Sivakumar, S.H.S. Zein, A.R. Mohamed, Carbon Sci. Technol. 1 (2008) 24-29.

[16] C.T. Hsieh, Y.T. Lin, J.Y. Lin, J.L. Wei, Mater. Chem. phys. 114 (2009) 702-708.

[17] W. Yue, W. Zhou, J. Mater. Chem. 17 (2007) 4947-4952.

[18] S. Zhan , Y. Tian, Y. Cui, H. Wu, Y. Wang, S. Ye, Y. Chen, China Particuology 5 (2007) 213–219.

[19] Z. Qiang, L. Yi, H. Ling, Q. Wei-Zhong, L. Guo-hua, W. Fei, New Carbon Mater. 23 (2008), 19-32.

[20] T.T. Cao, T.T.T. Ngo, V.C. Nguyen, X.T. Than, B.T. Nguyen and N.M. Phan, Adv. Nat. Sci. Nanosci. Nanotechnol. 2 (2011) 1-5.

[21] M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409 (2005) 47–99.

[22] T. Belin, F. Epron, Mater. Sci. Eng. B. 119 (2005) 105–118.