Embedding of a 2D Graphene System in Non-Commutative Space

Document Type: Research Paper

Authors

Department of Physics, University of Kashan, Kashan, Iran

10.7508/jns.2013.03.007

Abstract

The BFT approach is used to formulate the electronic states in graphene through a non-commutative space in the presence of a constant magnetic field B for the first time. In this regard, we introduce a second class of constrained system, which is not gauge symmetric but by applying BFT method and extending phase space, the second class constraints  converts  to the first class constraints so the system becomes a gauge symmetric.

Keywords


[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos& A. A. Firsov, Nature. 438 (2005) 197.

[2] Mark O. Goerbig, Quantum Hall effects. [arxiv:0909.1998v2] (2009).

[3] Michael S. Fuhrer, Chun Ning Lau, MRS Bulletin. 35 (2010).

[4] Y.Zhang, Y.Tan, Horst L. Stormer and Philip.Kim. Nature 438 (2005) 201.

[5] Z.Jiang, Y. Zhang, Y.W.Tan, H.L. Stormer, P.Kim, Solid State Communications. 143 (2007) 14-19.

[6] Shubnikov, L.W. and de Haas, W. J. Proceedings of the Royal, Netherlands Society of Arts and Science. 33 (1930) 130-163.

[7] O.F Dayi, M Elbistan, Physics Letters A 373 (2009) 1314-1320

[8] O. F Dayi, B Yapışkan, Physics Letters A 374 (2010) 3810-3817

[9] O. F Dayi, A Jellal, Journal of Mathematical physics. 51 (2010).

[10] P.A.M. Dirac, “Lectures on Quantum Mechanics”. Belfer graduate School, Yeshiva (2001).

[11] I. A. Batalinand  I. V. Tyutin, Int. J. Mod. Phys A 6(1991) 3255.

[12] E. S. Fradkinand  G. A. Vilkovisky, Phys. Lett  B 55(1975) 244.

[13] M. Monemzadeh and A. Shirzad, Int. J. Mod.Phys A 18(2003) 5613.

[14] A. Shirzad, M. Monemzadeh, Physics Letters B 584(2004) 220-224.

[15] M. Monemzadeh, and Aghileh S. Ebrahimi, Modern Physics Letters A 27(2012)

[16] N .Banerjee, R .Banerjee and S .Ghosh, Ann. N .Phys. 241 (1995) 237.