Young’s Modulus and Poisson’s Ratio of Monolayer Graphyne

Document Type: Research Paper

Authors

1 Department of Mechanical Engineering, University of Guilan, Rasht, Iran, P.O. Box 3756

2 Department of Physics, University of Guilan, Rasht, Iran, P.O. Box 41335-1914

10.7508/jns.2013.03.005

Abstract

Despite its numerous potential applications, two-dimensional monolayer graphyne, a novel form of carbon allotropes with sp and sp2 carbon atoms, has received little attention so far, perhaps as a result of its unknown properties. Especially, determination of the exact values of its elastic properties can pave the way for future studies on this nanostructure. Hence, this article describes a density functional theory (DFT) investigation into elastic properties of graphyne including surface Young’s modulus and Poisson’s ratio. The DFT analyses are performed within the framework of generalized gradient approximation (GGA), and the Perdew–Burke–Ernzerhof (PBE) exchange correlation is adopted. This study indicates that the elastic modulus of graphyne is approximately half of that of graphene due to its lower number of bonds.

Keywords


[1] A. Hirsch, Nat. Mater. 9 (2010) 868–871.

[2] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318 (1985) 162–163.

[3] S. Iijima, Nature 354 (1991) 56–58.

[4] X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Science 303 (2004) 1348–1351.

[5] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666–669.

[6] R.H. Baughman, H. Eckhardt, M. Kertesz, J. Chem. Phys. 87 (1987) 6687–6699.

[7] J.M. Kehoe, J.H. Kiley, J.J. English, C.A. Johnson, R.C. Petersen, M.M. Haley, Org. Lett. 2 (2000) 969–972.

[8] T. Yoshimura, A. Inaba, M. Sonoda, K. Tahara, Y. Tobe, R.V. Williams, Org. Lett. 8 (2006) 2933–2936.

[9] G.X. Li, Y.L. Li, H.B. Liu, Y.B. Guo, Y.J. Li, D.B. Zhu, Chem. Commun. 46 (2010) 3256–3258.

[10] G. Li, Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, Y. Li, J. Phys. Chem. C 115 (2011) 2611–2615.

[11] N. Narita, S. Nagai, S. Suzuki, K. Nakao, Phys. Rev. B 58 (1998) 11009–11014.

[12] M. Kondo, D. Nozaki, M. Tachibana, T. Yumura, K. Yoshizawa, Chem. Phys. 312 (2005) 289–297.

[13] M.M. Haley, Pure Appl. Chem. 80 (2008) 519–532.

[14] M. Long, L. Tang, D. Wang, Y. Li, Z. Shuai, ACS Nano 5 (2011) 2593–2600.

[15] J. Zhou, K. Lv, Q. Wang, X.S. Chen, Q. Sun, P. Jena, J. Chem. Phys. 134 (2011) 174701.

[16] H. Zhang, M. Zhao, X. He, Z. Wang, X. Zhang, X. Liu, J. Phys. Chem. C 115 (2011) 8845–8850.

[17] L.D. Pan, L.Z. Zhang, B.Q. Song, S.X. Du, H.J. Gao, Appl. Phys. Lett. 98 (2011) 173102.

[18] S.W. Cranford, M.J. Buehler, Carbon, 49 (2011) 4111–4121.

[19] S. Baroni, D.A. Corso, S. Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj, http://www.pwscf.org/ .

[20] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188–5192.

[21] M. Topsakal, S. Cahangirov, S. Ciraci, Appl. Phys. Lett. 96 (2010) 091912.

[22] B. Lee, R.E. Rudd, Phys. Rev. B 75 (2007) 041305.

[23] C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385–392.