Investigation of Laminar Pulsating Nanofluid Flow and Heat Transfer in a Rectangular Channel

Document Type: Research Paper

Authors

Mechanical Engineering Department, Faculty of Engineering, Shahrekord University, Shahrekord, Iran

10.7508/jns.2013.03.004

Abstract

In this study, two-dimensional pulsating unsteady flow of nanofluid through a rectangular channel with isothermal walls is investigated numerically. The set of resultant algebraic equations is solved simultaneously using SIMPLE algorithm to obtain the velocity and pressure distribution within the channel. The effects of several parameters, such as volume fraction of different nanoparticles, Reynolds number, and the amplitude and frequency of pulsation flow, on the rate of heat transfer and pressure drop are examined. The results show that the heat transfer enhancement on the target surface obtained by the flow pulsation highly depends on pulsating velocity. It can also be seen that total Nusselt number increases significantly due to increase in amplitude of pulsation and volume fraction of nanoparticles. Analysis also reveals that pressure drop for the alumina nanoparticles is much greater than that of the base fluid.

Keywords


[1] D. Xu, T. Chen, Y. Xuan, Int. J. Heat and Mass Transfer, 39 (2012) 504–508.

 [2] J. Galindo, P. Fajardo, R. Navarro, Applied Energy, 103 (2013) 116–127.

 [3] B.H. Yan, Annals of Nuclear Energy, 38 (2011) 2779–2786.

 [4] X.Wang, N. Zhang, Int. J. Heat and Mass Transfer, 48 (2005) 3957–3970.

 [5] W. Chang, G. Pu-zhen, T. Si-chao, X. Chao, Int. J. Nuclear Energy, 58 (2012) 45–51.

[6] D.A. Nield, A.V. Kuznetsov, Int. J. Thermal Sciences, 46 (2007) 551–560.

 [7] G.A. Shahin, MsC thesis University of Western Ontario, Ontario, 1998.

 [8] H. Chattopadhyay, F. Durst, S. Ray, Int. J. Heat and Mass Transfer, 33 (2006) 475–481.

 [9]   D. Wen, Y. Ding, Int .J. Heat and Mass Transfer, 47 (2004) 5181–5188.

 [10] R. Lotfi, Y. Saboohi, A.M. Rashidi, Int. J. Heat and Mass Transfer, 37 (1) (2009) 74–78.

[11] S.Z. Heris, M.N. Esfahany, S.Gh. Etemad, Int. J.  Heat and Fluid Flow, 28 (2) (2007) 203–210.

[12] Yan, B.H., Yu, L., Yang, Y.H., Ann. Nucl. Energy 37, (2010) 295-301.

[13] M. Jafari, M. Farhadi, K. Sedighi, Int. J. Heat and   Mass Transfer, 45 (2013) 146–154.

[14] M. Rahgoshay, A.A. Ranjbar, A. Ramiar, Int. J. Heat and Mass Transfer, 39 (2012) 463–469.

[15] Y. T., Yang, F.H, Lai, Int.J.Heat and Mass Transfer, 38 (2011) 607–614.

[16] B. Ghasemi, S.M. Aminossadati, Int. J.Heat Transfer. Part A, 55 (2009) 807–823.

[17] S.M. Fotukian, M. Nasr Esfahany, Int. J. Heat and Mass Transfer, 37 (2010) 214–219.

[18] H.N. Hemida, M.N. Sabry, A. Abbel-Rahim, H. Mansour, Int. J. Heat and Mass Transfer, 45 (2002) 1767–1780.

[19] Z. Guo, H. J. Sung, Int. J. Heat and Mass Transfer, 40 (1997) 2486-2489,

[20] A. Kumar, A.K. Dhiman, Int. J. Thermal Sciences, 52 (2012) 176–185.

[21] P. Promvonge, S. Pethkool, M. Pimsarn, C. Thianpong, Int. J. Heat and Mass Transfer, 39 (7) (2012) 953–959.

[22] H.A. Mohammed, P. Gunnasegaran, N.H. Shuaib, Int. J. Heat and Mass Transfer, 38 (1) (2011) 63–68.

[23] H. Heidary, M.J. Kermani, Int. J. Heat and Mass Transfer, 39 (1) (2012) 112–120.

[24] Y.H. Lin, S.W. Kang, H.L. Chen, Applied Thermal Engineering, 28 (2008) 1312–1317.

[25] R.R. Riehl, N.D. Santos, Applied Thermal Engineering, (2011) 1–5.

[26] C.H. Chon, K.D. Kihm, S.P. Lee, S.U.S. Choi, Applied Physics Letters, 87 (15) (2005) 153107–153110.

[27] H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, Int. J. Thermal Sciences, 48 (2009) 363–371.

[28] A. Mahdy, Nuclear Engineering and Design, 249 (2012) 248-255.

[29] N. Masoumi, N. Sohrabi, A.A. Behzadmehr, J. Phys, D: Applied Physics 42, (2009) 055501–055506.

[30] Oztop, H.F., Abu-Nada, E., Int. J. Heat Fluid Flow, 29 (2008) 1326–1336.

[31] S.V. Patankar, Hemisphere Publishing Corporation, New York, (1980).

[32] J.P. Van Doormaal, G.D. Raithby Int. J. Heat Transfer, 7 (1984) 147–163.

[33] S. Uchida, ZAMP, 7 (1956) 403–422.