Thermal Inactivation and Aggregation of Lysozyme in the Presence of Nano- TiO2 and Nano-SiO2 in Neutral pH

Document Type: Research Paper

Authors

1 Department of Biology, Faculty of Science, University of Shahrekord, Shahrekord, I. R. Iran.

2 Institute of Nano Science and Nano Technology, University of Kashan, Kashan, I. R. Iran.

3 Department of genetic, Faculty of Science, University of Shahrekord, Shahrekord, I. R. Iran.

4 Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, I. R. Iran

10.7508/jns.2013.03.003

Abstract

Protein aggregation is a problem in biotechnology. High temperature is one of the most important reasons to enhance enzyme inactivation and aggregation in industrial systems. This work focuses on the effect of TiO2 and SiO2 nanoparticles on refolding and reactivation of lysozyme. In the presence of TiO2 and SiO2 nanoparticles, after enzyme heat treatment at 98C for 30 min, not only aggregates were observed, but the amount of those increased. Hence the residual activity of lysozyme (without additives) and even in the presence of TiO2 and SiO2 nanoparticles after heat treatment was very low (<5%). Tm of the aggregated lysozyme after this heat treatment was decreased with increasing concentrations of TiO2 and SiO2 nanoparticles from 0 to 0.02 mg/ml in neutral pH, Whether the Tm of natural enzyme was above 373 (K) or 100C. these nanoparticles help enzyme denaturation and misfolding in heating.

Keywords


[1] S. Colombié, A. Gaunand, and B. Lindet, Journal of Molecular Catalysis B: Enzymatic,. 11 (2001) 559-565.

[2] M. Kudou, et al, European Journal of Biochemistry, 270 (2003): 4547-4554.

[3] A.H. Faraji, and P. Wipf, Bioorganic    and medicinal chemistry,. 17 (2009) 2950-2962.

[4] H. Noritomi, T. Takasugi, S. Kato, Biotechnology Letters 30 (2008) 689-693.

[5] S. Colombia, A. Gaunand, B. Lindet, Enzyme and microbial technology, 28 (2001) 820-826.

[6] Y. Hung, et al., Colloids and Surfaces B: Biointerfaces, 81 (2010) 141-151.

[7] S.S.S. Wang, et al. Journal of bioscience and bioengineering, 107 (2009) 355-359.

[8] Wu, X. and G. Narsimhan, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1784 (2008) 1694-1701.

[9] D.Y. Mason, and C.R. Taylor, Journal of clinical pathology, 28 (1975) 124-132.

[10] C.C.F. Blake, et al. Nature, 206 (1965) 757-761.

[11] P. Jolles, and J. Jolles, Molecular and cellular biochemistry, 63 (1984) 165-189.

[12] T. Peeters, and G. Vantrappen, Gut, 16 (1975) 553-558.

[13] J.C. Cheetham, P.J. Artymiuk, D.C. Phillips, Journal of molecular biology, 224 (1992) 613-628.

[14] S. Farhadian, B.Shareghi, M. Salavati-Niasari, R. Amooaghaei Journal of Nanostructures, 1 (2012) 95-103.

[15] B. Shareghi, S. Farhadian, M. Salavati-Niasari, Journal of Nanostructures, 1 (2012) 205-212

[16] Volkin, D.B., A.M. Klibanov, Journal of Biological Chemistry, 262 (1987) 2945-2950.

[17] P.L. Privalov, Advances in protein chemistry, 33 (1979) 167-173.

[18] S.M.1Daly,1T.M.1Przybycien,1R.D.1Tilton, Langmuir, 19 (2003) 3848-3857.

[19] C.M. Dobson, Journal of Molecular Biology, 341 (2004) 1317–1326.

[20] H. Iii, J.D. Levine Scholten, Methods in enzymology, 309 (1999) 467-476.

[21] A. Torreggiani, Di Foggia, M. Manco, I. De Maio, A. Markarian, S.A. Bonora, Journal of Molecular Structure, 891 (2008) 115-122.

[22] S.E. Zale, A.M. Klibanov, Biochemistry, 25 (1986) 5432-5444.

[23] M. Okanojo, K. Shiraki, M. Kudou, S. Nishikori, M. Takagi, Journal of bioscience and bioengineering, 100 (2005 ) 556-561.

[24] T. Arakawa, K. Tsumoto, Biochemical and Biophysical Research Communications, 304 (2003) 148-152.

[25] S.1Raccosta,1M.1Manno,1D.1Bulone,1D. Giacomazza, V. Militello, V. Martorana, P. San Biagio, European Biophysics Journal, 39 (2010) 1007-1017.

[26] S.1Tomita,1H.1Yoshikawa,1K.1Shiraki, Biopolymers, 95 (2011) 695-701.

[27] A.L. Fink, L.J. Calciano, Y. Goto, T. Kurotsu, D.R. Palleros, Biochemistry, 33 (1994)12504-12511.