Effect of Cu Content on TiN-Cu Nanocomposite Film Properties: Structural and Hardness Studies

Document Type: Research Paper

Authors

1 Radiation application Research School, Nuclear Science &Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), Karaj, Iran

2 Department of physics, Kashan University, Kashan, Iran

10.7508/jns.2013.02.012

Abstract

Titanium nitride-Copper (TiN-Cu) nanocomposite films were deposited onto stainless steel substrate using hollow cathode discharge ion plating technique. The influence of Cu content in the range of 2-7 at.% on the microstructure, morphology and mechanical properties of deposited films were investigated. Structural properties of the films were studied by X-ray diffraction pattern. Topography of the deposited films was studied using atomic force microscopy. Film hardness was estimated by a triboscope nanoindentation system. However, X-ray photoelectron spectroscopy analysis was performed to study the surface chemical bonding states. It was found that addition of soft Cu phase above 2 at.% to TiN film drastically decreased the film hardness from 30 to 2.8 Gpa due to lubricant effect of segregated copper particles. X-ray photoelectron spectroscopy results showed that Cu and TiN phases grew separately. In our case,the formation of a solid solution or chemical bonding between Cu and Ti was rejected.

Keywords


[1]J.Musil, Surf. Coat. Thecnol.125(2000),322-330

[2] L. R. Shaginyan, A. V. Kurdyumov, Powder Metall. Met. Ceram, 44 (2005),161-168  [3] S. H. Kim, H. Park, K. H. Lee, S. H. Jee, D-J. Kim, Y. S. Yoon, H. B. Chae, Journal of Ceram Pro. Res. 10 (2009) 49-53

[4] J. L. He, Y. Setsuhara, I. Shimizu, S. Miyake Surf. Coat. Thecnol. 137 (2001) 38-42.

[5] Y. Zhao, X. Wang, J. Xiao, B. Yu, F. Li, Appl. Surf. Sci. 258 (2011) 370 –376

[6] Z.G. Li, S. Miyake, M. Kumagai, H. Saito, Y. Muramatsu, Surf. Coat. Technol. 183

(2004) 62.

[7] F. Pinakidou, M. Katsikini, P. Patsalas, G. Abadias, E.C. Paloura, J. Nano Res. 6

(2009) 43.

[8] J.J. Mu, C.Z. Wang, J. Ma, G.L. Zheng, Heat Process. Technol. 37 (2008) 15.

[9] Z. Q. Liu, W.J. Wang, T.M. Wang, S.Chao, S.K. Zheng, Thin Solid Films. 325 (1998) 55-59

[10] A.Rahmati, Vac. 85(2011) 853- 860

[11] Z. Guo, X. J. Yang, M. Xiong, S. Chen, J. Wu, Y. Fan, H. Sun, L. Wang, J. W. Hui., J. Alloy. Compd. 493 (2010) 362–367.

[12] M. p. Drygas, R.T. Janik, F. Jerzy, Polish. J. Chem. Technol. 8 (2006) 60-63.

[13] M. Simonsen, E. Jensen, H. Li, Z. S. gaarda, G. Erik, J. Photochem. Photobio. A. 200 (2008) 192–200.

 14] I. Masaya, Nuclear. Instrum. Method. Phys. Res. B. 19/20 (1987)150-153.

[15] K.L. Syres, A.G. Thomas, D. J. H. Cant, S. J. O. Hardman, A. Preobrajenski, Surf. Sci. 606 (2012) 273–277.

[16] J. Ghijsen, L. H.Tjeng, J. V. Elp, H. Eskes, J. Westerink, G. A. Sawatzky, Phys. Rev. B. 38 (1988) 11322-11330

[17] K. Naotaka. M. Katsumi. K. Kazuhiko, Mater. Let. 57 (2003) 1949– 1954.

[18] L. Xiaolu.W. Xianhua, P. Daocheng, doi:10.1155/2012/708648.

[19] J. W. Lim, J. Iijima, Y. Zhu, J. H. Yoo, G. S. Choi, K. Mimura, M. Isshiki, Thin Solid Films. 516 (2008) 4040–4046.

[20]UG. Singh, RT. Williams, KR.Hallam, GC Allen, Solid State Chem. 178 (2005), 3405–3413

 [21] S. M. Hyun, G. H. Jeon, H. B. Jin, Surf. Coat. Technol. 177–178 (2004) 404–408.