Microwave-assisted Decomposition of two Simple Zinc(II) Schiff Base Complexes: A Facile and Fast Route to Synthesize ZnO Nanostructures

Document Type: Research Paper

Authors

Department of Chemistry, Lorestan University, Khoramabad 68135-465, Iran

10.7508/jns.2013.02.011

Abstract

ZnO nanorods and nanoparticles have been easily prepared via the decomposition of two simple Schiff base zinc (II) complexes, namely (N,N'–disalicylalethylenediamine)zince(II) and (N,N'–disalicylalphenylenediamine)zince(II) under microwave irradiation. The decomposition products of the complexes were characterized by FT-IR, XRD, SEM, EDX and UV-visible spectroscopy.  FT-IR, XRD and EDX results confirmed that as-prepared products are pure and single-phase ZnO. SEM images show that the product of each complex was made up of ZnO nanoparticles average diameter size of 50 nm and ZnO nanorods with diameter of 70–100 nm and length up to 3.5 μm .ZnO nanostructures prepared by present method could be appropriate photocatalytic materials due to a red shift in their band gaps (2.80 and 2.95 eV) compared with the bulk sample (3.37 eV). This method is simple, fast, safe, low-cost and also it is suitable for large-scale preparation of high purity ZnO nanostructures for applied purposes.

Keywords


[1] J. Wu, J. Cao, J, W.Q. Han, A. Janotti, H.C. Kim, (eds.), Functional metal oxide nanostructures, 1st edn., Springer Science and Business Media, New York, USA, 2012.

[ 2] X. Wang, Y. Li, Pure Appl. Chem. 78 (2006) 45–64.

[3] M. Niederberger, N. Pinna, Metal oxide nanoparticles in organic solvents: synthesis, formation, assembly and application, Springer-Verlag, London, 2009.

[4] H. Morko, U. Ozgur, Zinc oxide: fundamentals, materials and device technology, Wiley-VCH Verlag GmBH, 2009.

[5] Z. Wang, Mater. Sci. Eng. R: Rep. 64 (2009) 33–71.

[6] S.J. Kim, P.S. Cho, J.H.  Lee, C.Y.  Kang, J.S. Kim, S.J. Yoon, Ceram. Int. 34 (2008) 827–831.

[7] L. Lu, R. Li, K. Fan, T. Peng, Sol. Energy 84 (2010) 844–853.

[8] D. Kim, Displays  3 (2010) 155–159.

[9]C. Liu, J.A. Zapien, Y. Yao, X. Meng, C.S.  Lee, S. Fan, Y. Lifshitz, S.T. Lee, Adv. Mater. 15 (2003) 838–841.

[10] M.H. Huang, S.  Mao, H. Feick, H.Q. Yan, Y. Wu, Y.H. Kind, Science 292 (2001) 1897–9292

[11] T. Aoki, Y. Hatanaka, D.C. Look, Appl. Phys. Lett. 76 (2000) 3257–3258.

[12] G.S. Sberveglieri, P. Groppelli, A. Nelli, G.  Tintinelli, G. Giunta, Sens. Actuat. B 25 (1995)588–590.

[13] W.E. Devancy, W.S. Chen, J.M. Stewart, R.A. Mickelsen, IEEE Trans Electron Dev. 37 (1990) 428–433.

[14] R. Ullah, J. Dutta, J. Haz. Mater. 156 (2008) 194–200.

[15] Z.L. Wang, J.H. Song, Science 312 (2006) 242–246.

[16] Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291 (2001)1947–1949.

[17] F. Gu, S.F. Wang, M.K. Lu, G.Z. Zhou, D. Xu, D.R. Yuan, Langmuir 20 (2004) 3528–3531.

[18] Y.F. Zhu, W.Z. Shen, Appl. Surf. Sci. 256 (2010) 7472–7477.

[19] A. Du Pasquier, H.H. Chen, Y.C. Lu, Appl. Phys. Lett. 89 (2006) 253513-253515.

[20] C. Hariharan, Appl. Catal. A: Gen. 304 (2006) 55–61.

[21] W. Shen, Z. Li, H. Wang, Y. Liu, Guoa, Y. Zhang, J. Haz. Mater. 152 (2008)172–175.

[22] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84 (2004)3654–3656.

[23] X.S. Fang, C.H. Ye, L.D. Zhang, Y.  Li, Z.D. Xiao, Chem. Lett. 34 (2005) 436–437.

[24] M.A. Ali, M.R. Idris, M.E. Quayum, J. Nanostruct. Chem. 3:36 (2013).

[25] R. Comparelli, P.D. Cozzoli, M.L. Curri, A. Agostiano, G.  Mascolo, G. Lovecchio, Water Sci. Technol. 49 (2004) 183–188.

[26] G. Appierot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, A. Gedanken, Adv. Funct. Mater. 19 (2009) 842–852.

[27] M.K. Gupta, N. Sinha, B.K. Singh, N. Singh, K. Kumar, B. Kuma, Mater. Lett. 63 (2009) 1910–1913.

[28] C.S. Wei, Y.Y. Lin, Y.C. Hu, C.W. Wu, C.K. Shih, C.T. Huang, S.H. Chan, Sens. Actuat. A 128 (2006) 18–24.

[29] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yang, H, Adv. Mater. 15 (2003) 353-389.

[30] C. Jagadish, S.J. Pearton, Zinc oxide bulk, thin films and nanostructures: processing, properties and applications, first edn., Elsevier, Oxford, 2006

[31] J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32 (1999) 435–445.

[32] R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, Adv. Funct. Mater. 22 (2012) 3326-3370.

[33] M. Law, J. Goldberger, P. Yang, Annu. Rev. Mater. Res. 34 (2004) 83–122.

[34] Z.L. Wang, J. Phys. Condens. Mater.16 (2004)

[35] S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Inter. Nano Lett. 3:30 (2013) R829–R858.

[36] C.C. Chen, P. Liu, C.H. P. Lu, Chem. Eng. J. 144 (2008) 509–513.

[37] M. Ristiac, S. Musiac, M. Ivanda, S. Popoviac, J. Alloys Compd. 397 (2005) L1–L4.

[38] A.K. Zak, M.E. Abrishami, W.H. Majid, R. Yousefi, S.M. Hosseini, Ceram. Int. 37 (2011) 393–398.

[39] M. Kooti, A. Nagdhi-Sedish, J. Chem. (2013)1–4.

[40] L.C. Nehru, V. Swaminathan, C. Sanjeeviraja, Powder Technol. 226 (2012) 29–33.

[41] Y. Cao, B. Liu, R. Huang, Z. Xia, S.Ge, Mater. Lett. 65 (2011) 160–163.

[42] E. Darezereshki, M. Alizadeh, F. Bakhtiari, M. Schaffie, M. Ranjbar, Appl. Clay Sci. 54 (2011) 107–111.

[43] M. Salavati-Niasari, F. Davar, M. Mazaheri,  Mater. Lett. 62 (2008) 1890–1892.

[44] M. Salavati-Niasari, F. Davar, Z. Fereshteh, Chem. Eng. J.  146 (2009) 498–502.

[45] A. Kazemi-Babaheydari, M. Salavati-Niasari, A.  Khansari, Particuology 10 (2012)759–764.

[46] F. Bigdeli, A. Morsali, Mater. Lett. 64 (2010) 4–5.

[47] L. Xu, Y.L.  Hu, C. Pelligra, C.H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S.L.Suib, Chem. Mater. 21 (2009) 2875–2885.

[48] M. Distaso, R.N.K. Taylor, N. Taccardi, P. Wasserscheid, W. Peukert, Chem. Eur. J. 17 (2011) 2923–2930.

[49] B. Babita, D.K. Kumar, S.V. Manorama, Sens. Actuat. B. 119 (2006) 676–682.

[50] S. Cimitan, S. Albonetti, L. Forni, F. Peri, D. Lazzari, J. Colloid. Interface Sci. 329 (2009) 73–80.

[51] Z.K.Li,X.T. Huang, J.P. Liu, Y.Y. Li, G.Y. Li,Mater. Lett.  62 (2008) 1503–1506.

[52] G. Tandra, K. Soumitra, G. Jay, C. Subhadra, Mater. Res. Bull. 43 (2008) 2228–2238.

[53] A.K. Zak, W.H. Majid, H.Z. Wang, R. Yousefi, A. MoradiGolsheikh, Z.F. Ren,  Ultrason. Sonochem. 20 (2013) 395–400.

[54] P. Mishra, R.S. Yadav, A.C. Pandey, Ultrason. Sonochem. 17 (2010) 560–565.

[55] P. Banerjee, S. Chakrabarti, S. Maitra, B.K. Dutta, Ultrason. Sonochem. 19 (2012) 85–93l.

[56] D. Qian, J.Z. Jiang, P.L. Hansen, Chem. Commun. (2003) 1078–1079.

[57] P. Jajarmi, Mater. Lett. 63 (2009) 2646–2648.

[58] A. Moballegh, H.R. Shahverdi, R. Aghababazadeh, A.R. Mirhabibi, Surf. Sci. 601 (2007) 2850–2854.

[59] Z.H. Wang, D.Y. Geng, Z. Han, Z.D. Zhang, Mater. Lett. 63 (2009)2533–2535.

[60] C.H. Xu, H.F.Lui, C. Surya, Mater. Lett. 65 (2011)27–30.

[61] K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan, Chem. Mater. 11(1999) 882–895.

[62] D.M.P. Mingos, D.R. Baghurt, Chem. Soc. Rev. 20 (1991) 1–47.

[63] T. Thongtem, A. Phuruangrat, S. Thongtem, Ceram. Int. 36 (2010) 257–262.

[64] H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures, second ed., Wiley, New York, 1964.

[65]. K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Part B: Applications in coordination, organometallic, and bioinorganic chemistry, sixth edn. Wiley, New York, 2009.