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Abstract

In this study, forced-vibration analysis of a coupled system of single
layered graphene sheets (SLGSs) subjected to the moving nano-particle
is carried out based on nonlocal elasticity theory of orthotropic plate.
Two SLGSs are coupled with elastic medium which is simulated by
Pasternak and Visco-Pasternak models. Using Hamilton’s principle,
governing differential equations of motion are derived and solved
analytically. The effects of small scale, aspect ratio, velocity of nano-
particle, time parameter, mechanical properties of graphene sheets,
Visco-elastic medium on the maximum dynamic responses of each
SLGSs are studied. Results indicate that, if the medium (elastic or
visco-elastic medium) of coupled system becomes more rigid, the
maximum dynamic displacements of both SLGSs will be closer
together.

2013 JNS All rights reserved

1. Introduction

properties than the same chemical substances in a

larger size. Nano-sized chemicals can have different

In early 2007, the United Nations reported that
which  then
approximately 0.1% of the global manufacturing

nanotechnology, accounted  for
economy, would grow to 14% of the market by
2014. Nanotechnology is a field of applied science
concerned with the control of matter at dimensions
of roughly 1 to 100 nanometers (nm). At the
particle size of 1 to 100 nm, nano-scale materials

may have different molecular organizations and

properties due to increased relative surface area per
unit mass, which can increase physical strength and
chemical reactivity and also in some cases, the
dominance of quantum effects at the nanometer
size, which changes basic material properties [1].
Vibration analysis of isotropic and orthotropic
plates using the classical theory of elasticity

(generalized Hook’s law) is stated for various
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theory of plates in many books [2-4]. The nonlocal
elasticity theory was proposed and developed by
Eringen [5-8] to consider small scale effect in the
continuum model of nano-structures. In recent
years, studies about the vibration of nano-structures
using the nonlocal theory of elasticity are included
many researches due to vibration
characteristics of them. Pradhan and Phadikar [9]

studied the nonlocal vibration of single and double

superior

layered nano-plates using the classical and first-
order shear deformation (FSDT) theories. The
governing differential equations of motion are
solved by Navier’s approach for simply supported
boundary condition. Murmu and Adhikari [10, 11]
investigated nonlocal vibration of bonded double
nano-plate systems and the governing equations of
motion in terms of displacements are solved by the
new analytical method.

The graphene sheets are used for manufacturing of
many devices such as oscillators, clocks and sensor
devices, due to having high resistance and unique
properties of them. The application of the single-
layered graphene sheet (SLGS) like mass sensors is
studied by sakhaee-pour [12, 13]. In recent years,
the vibration characteristics of the graphene sheets
have attracted attention of many researchers due to
their superior vibrational behaviors. Ansari et al.
[13] investigated vibrational behavior of SLGS
based on the FSDT and the differential equations
are solved by the generalized differential quadrature
method (GDQ) [14-16] for two different boundary
conditions. In the other work, Ansari et al. [17,18]
studied vibration of multi-layered graphene sheet
(MLGS) using the FSDT of plate. The vibration
analysis of orthotropic SLGS using the classical
plate theory is carried out by Pradhan and Kumar
[19] and the governing equations of motion are
solved by the DQM.
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The foundation of sheets can be assumed as linear
(Winkler
nonlinear elastic medium. Pradhan and Kumar [20]
of the
orthotropic SLGS embedded in a Pasternak elastic

and Pasternak) elastic medium or

have carried out vibration analysis
medium. The normal forces are considered at the
Winkler elastic medium although the shear forces
are added also in the Pasternak elastic medium.
Behfar and Naghdabadi [21] studied vibration of
MLGS embedded in elastic medium. Chien et al.
[22] investigated nonlinear vibration of laminated
plates on a nonlinear elastic medium. Ghorbanpour
et al. [23] studied nonlocal vibration of a coupled
system of DLGSs by Visco-Pasternak medium.
They used differential quadrature method (DQM) to
solve governing equations and investigated effects
of different parameters on frequencies of coupled
system of DLDS.

Forced vibration of graphene sheets can be
assumed under the moving nano-particle.
Application of nano-tubes under moving nano-
particle is presented to[24]. Kiani is carried out
Forced vibration of carbon nano-tube [25] and
plates [26-28] subjected to a moving nano-particle
and also, Simsek [29] investigated forced vibration
of coupled system of carbon nano-tubes under the
moving nano-particle. Ghorbanpour et al. [30]
studied forced vibration of BNNTSs subjected to the
moving nano-particle.

Despite of done works that some of them
mentioned above, no report has been found in the
literature on the forced vibration of the coupled
system of SLGSs by the Visco-Pasternak medium
subjected to the moving nano-particle. Motivated
by this idea, we aim to study forced vibration
response of the coupled system of SLGSs by the
Visco-Pasternak under the moving nano-particle
using the non-local elasticity theory of plate.

Governing equations are solved analytically and
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closed-form solution of dynamic displacement is

expressed for each SLGSs on coupled system.

2. Formulation

A schematic diagram of a coupled system of
SLGSs by the Pasternak and Visco-Pasternak
medium subjected to the moving nano-particle is

shown in Fig.1.

Vp
hf hene Sheet 1
Shear Layer ssp I
W EEEEESEEE
(<) [N Graphene Sheet?
(a) Pasternak medium
Vp
h Graphene Sh
F—— phene Sheet 1
““’ye[:f:" EHELHEL ?P:}t’f;:mm

(b) Visco-Pasternak medium
Fig.1. Coupled system of SLGSs subjected to the moving
nano-particle

Geometrical parameters of length a, width b
and thickness % are also indicated. Movement
velocity of nano-particle is assumed constant
velocity (V). The transverse loading of moving
nano-particle on the upper SLGS can be written
as [29]:

g, =PS(x—x,) (1)

where 0 is the Delta Dirac function and g, is the

transverse loading of moving nano-particle and

X, 1s obtained by:

X, = th )
where ¢ is the time of arrival nano-particle with

constant velocity (V) to location x,,.

2.1. General assumptions
The classical laminated plate theory (CLPT) is
reformulated by the non-local elasticity theory for
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considering small scale effect. According to CLPT,

the displacement fields can be expressed as [2, 4]

ow
[x’y ,Z,t) :uo(x:y ,t)_Z PN}

Ox
:xay aZst):vo(x’y9t)_Z %a

oy
(xﬂyazat)zwo(xsy!t)a (3)

where uy, vy and wy are the displacements along the
coordinate lines of a material point on the xy-plane.
The small scale effect in the continuum model is
considered based on nonlocal elasticity theory that
was proposed by Eringen [5,6]. The nonlocal
constitutive differential equation of elasticity is

expressed as [7, 8]:

- Vo =1}, (4)
where,
=S¢, Q)

and also, u is the nonlocal parameter, ¢ is the
macroscopic or local stress tensor and o is the
nonlocal stress tensor. The nonlocal stress tensor
goes to local stress tensor when the value of the
nonlocal parameter goes to zero and also, S is the
fourth-order elasticity tensor and (:) denotes the
The SLGSs
sheet and the matrix S for the

‘double-dot product’. is assumed
orthotropic

orthotropic graphene sheet may be written as [2]

On 0n O

S=0s On Oux | ©)
Ou Qn Qg

where,
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én = Quc4 +2(0,, +20 )s’c® + Q2254,
éu =(0,+0,, _4Q66)5202 +0, (S4 + 04)3
ézz = Q11S4 +2(0,, + 20 )5202 + szc4,
é]é =(0,-0, _2Q66)Sc3

+(0), — 05, +204 )CS3 )
éze =(0, -0, 20 )CS3

+(0, -0, +20, )503 >
666 =(0), + O =204 - 2Q]2)5202

+ 04 (s4 + c4),

(7)
and also,

E E
Q=i 9 1-V1512L21 ’ ®)
E E

sz:ﬁ’ Q66:G12:2(T1v12)’
c=cosb, s=sino, )

where the coefficients Q; (i,j=1,2,6) are known
in terms of the engineering constant of the
orthotropic graphene sheet, £; and E, are the
Young’s module in directions 1 and 2, v;, and
v,; denote the Poisson’s ratios and G, is the
shear modulus. The structure of orthotropic
graphene sheet is known armchair (6=0) and
Zigzag (6=90).

The Von Karman-type nonlinear strains
relations are used in here and these relations are

expressed as [2]:

gxx:a_u_}_l(a_w)z, & :@_{_l(a_w)z’

ox 2 Ox Yooy 2 oy
gxz :l(a_u—i—a_w)’ g}z :l(@_’_%))

20z 0 ¥ 270z Oy

1 ou oOv owow ow
g = (L ovom L
Y20y oOox Ox oy 0z

(10)

The elastic and visco-elastic foundation can be

simulated with Pasternak and Visco-Pasternak
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medium, respectively. Pasternak and Visco-Pasternak
loads can be written as [23] :

=K W

pasternar = KWV = KszW

visco-winkter = KW + CdW

=K W-KN'W+CW

Winkler

(11

Visco—Pasternak

where K,,, K; and C,; are the Winkler, Pasternak and

damper modulus parameters, respectively.

2.2.

motion

Solving the differential equations of
The governing differential equations of motion are
derived using the Hamilton’s principle which is given
as [2]:

(U +V —o6K)dt =0, (12
where U is the virtual strain energy, JV is the virtual
work done by external applied forces and oK is the
virtual kinetic energy. The equations of motion in
terms of the displacements for the single layered
graphene sheet are derived using Eq. (12) and

expressed as [23] :

o'w o*w
l)11 y—Z(Dlz +2D66)W
otw O*w
D22 ay—4+ q= 10 ?
12
I o'w N o*w ) (
oxtort oytor
0w 0w o'w
uv°[1 —1,( + )—4].
Cor T ax’er ovier 1

where [, I;, I, are mass moments of inertia, p,
denotes the density of the material and D;; can be

expressed as:
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h 4 4 4
a2 o'W, o'W, o'W,
7 2 _D11_42_2(D12+D66) 2 22 B! 42
(o 11, 1) = [ py (1,1, )elz, ox ox*dy dy
o (14) ow, oW,
_KW(VVZ_I/VI)—i_KG 2 + 2
h Ox oy
2
A 2 .. 2 2 2 2
D, = [0,(z")dz (i,j=1,2,6). . —Kc(aapzllﬁanj}ﬂlﬂ(a;?ﬁ Wj
h
x (15) X y X" Oy (17)
2 2
22.1. Coupled system of SLGS with uk | 2 ”j L9 ”jj
Pasternak medium N
The motion equations for both SLGSs are o'w, o'w, o'w,
+ukK 22—+t
derived by substituting Eq.(1) and Eq.(11) into Ox ox°oy. Oy
Eq.(13): o'w. . o'w o'W ow,
SLGS-1 (Th Sheet): UK | 2 [
-1 (The upper Sheet): ox ox°oy> oy ot
4 4 4
+ﬂKG(aV£/1+2 alezJ“aVZ/lj +1 e +—82WZ +
Ox ox oy~ Oy 252 a2 P
4 4 4
—,1¢KG(8WZ+28W2 +6sz I 62VI/2+82VV2
o’ ox’oy’ oy’ a1 P .
2 2 2 /[l— =
J 5_ 0 w N 0 w, o 84Wz 84Wz 84I/V2
: o\ ox’ 8y2 [2 4 +2 EPNEI 4
ox ox“oy oy
oW, W,
+
ool ‘Laxr’ @ For separating the coupled differential equations of
+ —_— =
a or’ o'W, o'w. o'w, motion, ¥, is assumed as follow:
lat Tatet o L, 0) =W (x, y,0) + Wy (x, p,
o0 0
—P§(x—x,)+uP (§+§j5 (x—x,) By summing the coupled differential equations of
motion for SLGS-1 and SLGS-2 (Eq.(16) and Eq.(17)),
(16) the motion equation in term of W, can be written as:

SLGS-2 (The bottom sheet):
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oW, o'W, o'W,
fqlaf _Zu%+l%0af@ﬂ+ —L,B?i
oW oW i N [T N
1 Tt =Dy | —| — Dy L
5 ox oy U i b
H— 19 X
o I om, 2 ow, oW, 9 =1 j=I ZANEL ’
o ’ ox’oy’ ’ oy’ —2(Dy, + Dgg) ; 7
o'w. oW o (o'w oW i ;
D —rn_ n - n n . Yy. [ J7y
D22 8y4 [0 6[2 +Iz 6t2 ( 6x2 + 8))2 j q, (t)sm [7) Sin (TJ
2 2 i . \2 BEVAN
=—PS(x—x, )+ uP 8_2+_2 5(x-x,) A4 J7 @1
oy )
. . . . n m . 4 . 4
The governing differential equation of +Zz U ( 1 ] J{ JZ j %
motion for SLGS subjected to the moving nano- ==t ] a b
particle without any foundation derived g i\ ir 2
according to Eq.(19). Based on separation +2 (; (TJ
variables the dynamic displacement of SLGS . - o B
(W,) for simply supported boundary condition at q, (l‘ sin —j sin % +
all edges is considered as:
N
~1,-1, Z- lﬁj x
(i,)) Cl b
W, (x0.0) = leq Osin i)
i Jj=1 ]”y
o _ g, (t)sm sin| Z==
By substituting Eq.(20) into Eq.(19), the a b

dynamic displacement of SLGS (#,) in terms of

i and j is derived: The following terms are defined for reduction or

D o'W, _2D.+D.) o'w, D o'w, simplification long mathematical sentence. The stiffness
"ot 2 ey’ 2 oyt matrix of SLGS can be written as:
62W 82 B . 4
KO-+ K | TR =D (”j -D; (ﬂj
Ox oy a b
2)
aw, o, o'W, o'W,
K, + K, |~ — 2D, + [%Q in)
ax oy’ Oox oy b

X {GZWZ aszj and also, the mass matrix of SLGS vibration and forced
—uk

+
o’ oy’ loading of nano-particle can be presented as:
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[Her)
) -
o 46])

f(x,t)= —P§(x—xm)

+/1P(%+§]§(x—xm) (24)

o) =

By substituting the stiffness, mass matrix
and forced loading of nano-particle into Eq.(21),
the differential equation of motion is derived in
terms of ¢,(?) and its derivatives of that:

K& (l/)(t)+m(tj) () f(X t)
(25)

Delta Dirac function is removed from
Eq.(25), by multiplying both sides of Eq.(25) by
sin(inx/a)sin(jmy/b) and then double integration
of both sides through length and width:

b

()() @) ,(i,))
I[Kz/ i,j _l_mz/qz/:l
0

|
( ) ]byD b

:'[ f, (x,t)dxdy

(26)

After performing mathematical operation on
the Eq.(25), this equation can be converted to:
K(l /) (t J) (t)+ m(l /) (l 7= f(t 1)(1‘)

27)

where,

. i) iVt
£ =22 (1 + ”(ﬁj }in( ,,
jr a a

K@ =0.25K%"ab
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m™ =0.25m""ab

(30)
Therefore,
qnl /)+ (9))] (i,J) Q’El 27
@ -0
where,
()]
i = K
m(iﬂj)
(32)
(@i,))
260 (o _ Ja ()
Qn (t)_ mr(,i,j)
(33)

g,"” will obtain by taking Laplace of two

sides of Eq.(31),

- 1 L7 N
g, ()= o) 0% () sina!™ (t—7)dr
0
(34)
By substituting Eq.(33) into Eq.(34), ¢,*” is

obtained:

. 2
4 ( j 2Pb (Z)
"] G

(35)
irV (i)
><s1n( . jsmw Ne-7)dr
a
The velocity parameter can be defined as:
v,
r=——a
a)’(ll’] (36)

where imv,/a is frequency of moving nano-
particle. Here, two cases for velocity parameter
(r) are considered:

1. =1

2. r£l

Therefore, for case of r#1:

(1/)( ) J) ( S (14_#(%) jAl(i,/)(t)

(37

where,
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LZANIRIRS
( a j () (38)

and also, the dynamic displacement of SLGS for

case of r#1 can be written as:

2Pb ir\’
W (x,y,t)=—— ) (14—#(—) ]x
jrm, a

. . (39)
Al(["’) (t) sin [ﬂj sin (ﬂj
a b
For case of r=1:
. 2
qW“0=———i2——71+ﬂU£j 4"
jﬂ.m’(?in/') (a):i"f)) a
(40)
where,
A = w"tcos (a),ﬁi’*/)t) —sin (co,gi’j)t)
(41)

Therefore, the dynamic displacement of
SLGS for case of =1 can be written as:

Pb ir\’
T (i/)( (u’))z T u ;
Jjaom! (@
x A" sin (ﬂj sin [—]ﬂyj (42)
a b

The differential equation of motion for
SLGS-2 (Eq.(17)) in term of W, can be obtained
by substituting Eq.(18) into Eq.(17):

W, (x..1)
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o'W, o'w, o'w,
_Dll 42 _2(D D66) 2 42
ox ay oy

_KW(VI/2 —VV"(X,y,t)-i-VVz(x,y,t))-i-
2 2 2 2

o[ Do T o 20 2
Ox Oy Ox oy

—KG( " azzJ(VK(xayaf)—%(xayaf))

o’y

4 4 4
+ukK, 8144/2+2 62W22+6VI:2]
Ox ox'oy- oy
2 62
—uK, 2+E;;jUK(XJG0—W%(xu%0)
4 4 SN(W (x,p,t
—uK, | —+2 ? 2+a4j£ (7 )]
X Oox 6y 8y _VVZ (x,y,t) (43)

-1

0

yW a aW aW
6t2 61 6x 6y

; ym+ym
ot "L ax’ oy’

ﬂﬁ? o'w, o'w,  o'w.
.y 2 2 2 2

=0

+ +
ox* ooy’ oyt

The dynamic displacement of SLGS-2 (W3)
for all edges simply supported boundary

condition is assumed as:

-3 sl 2 o 222 g

i=l j=1

W, (x, 1)

(44)

By substituting Eq.(44) into Eq.(43), the
governing differential equation of motion for
SL.GS-2 can be written as below:

[K;"”q;"’”(t)ntm(’ ’)q; /)( )]sin(m—yjsin(j%j

a

= £ (t)g"” (t)sm(m js n[ﬂ[yj
a b

(45)
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where,

K(”) _Du( j_z(Du""Dés)(ij(
a a

_Dn(f;j ok -2k [
(2] 5]

. 4 . 4 .
o[ o

Therefore,

&)
@)

|

I

(46)

(47)

(48)

q§z>(t)_k( (i.j )) <,,)( ) £201>(t)
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(49)
The natural frequency of system (coupled system of
SLGSs by the Pasternak medium subjected to moving
nano-particle) can be obtained as:

(i)
(11)_ K j
@, nénn (50)

and also,

- 2(i,j) ’(111)
0t - L -

Therefore, by taking Laplace of two sides of Eq.(49),

the below equations are obtained:

L[(j’(fﬁ ( ) <u>(t)} (Qr(li,j)(t)) (52)
=[50 () +(ol) 0 ()] =10 )

(53)
= [+ {ol ) o ()= 2000 )
(54)
=0, (s)= QL0 ﬂ
(s +(a))
(55)
Therefore,
q,” (1)=L"(0" (s))
. [ (gz“f) 2}
[+ (et )
— ! ! *O (1)

(Sz +(a)r(li,j))2) 6
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= q(i,j) (t)

L IQQ”)(T)szn N (t—7)dr
(57)
For case of r#£1:

)

0 ()=

X
i)
m iVt
’ (]ﬂm w ([ ”j ”) ]

(58)

i ’ jr ’
—uk I I
o (aj {b (59)
MEIGEGY
H2 a b a b

The dynamic displacement of SLGS-2 for

r#1 can be expressed as:
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W, (x,y,t)=

[1+,u( j ]Sm( jSzn( yj

a a b
)mg J) iV, _(a)([,j))z

—2Pbe’ 2 a "

(sin(a)g”j)t) sin(wf’”t)}

(i.J) (i:/)
@, @,

( a)ii, i a)gi"’)) ( a),(f"") n a)gi’j))
i7ert
|

. i7Z'th
. i,j Sm
(Z-W,,t]sm(ww) .

a

Therefore, for case of r=1:

i) (1= B o
0, (T) m(u) (i.)) )%
2l () el

(61)

The dynamic displacement of SLGS-2 for case of

r=1 can be expressed as:
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W,(x,y,t)=

Pb£1+y(aj JB“” /
(HO)(2)+ G (1)- R (2))

Jem e (a1, el

n

A% 2 (62)
i

(a)gi"/ ) )2 sin (a)gi’j )t)
—o™) x +(a)fli"/ ) )2 sin(a)gi"/ )t)

201l sin (o) (63)

~

(07) t0i” cos(l 1) |

((a)r(’i,j) +w§i,_/) )2 (a)lgi,j) _a)éi,j) )2) (64)

(65)

171

2.2.2.Coupled system of SLGSs by the Visco-
Pasternak medium

The governing differential equations of motion for each
SLGSs of coupled system by the Visco-Pasternak
medium are presented as:

SLGS-1:
54 4
_Dn 41 2(Dlz D66) 2 12
o oW oW
D22 41 _Kw(VVl W;)+KG[_2I _2l
oy & oy
oW, OW, oW oW
_KG( 8x22 + @}22j+ w[ 8le ayzlj
oW, oW, :
kTR e o)

ZW 217 2 2
28,28 c(aw o)
ooy oy

o
& 62W az a“W a4 )
tU— 1,
ot éxﬁy ay )
oW, a

—10?4-]2

PS(x-x )+ ﬂp(;—+5j5(x x,)

SLGS-2:
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oW, oW, oW,
_Du?f_z(Du"'D«)) 25/2 _Dzz @/42

—KGV1m+K(yW y@}_
a' oy

oW oW oW, oW,

KG[?” ay’)“‘K [ 2 " ay;J

(22

oy

3%+ a'w, oW,

6‘x4 axzasz 8)/4

(#W /A ﬁw}
+2

|

ax4 ax28y2 + ay4

oW, aszj
+

&xZ @}2

/A ﬁW]

xuC, (

+

—,UCd ( 8)62 8)/

(ﬁ% y%)
]0 2 + 2
Fl o\ o
X/,[—z
ot (#W o, awq

—1, P +28x28y2+8y4
W, &(ﬁ% ﬁmj
—5 th— > T/
or o\ o oy

=0

1,
(67)
By substituting Eq.(18) into Eq.(67), the

differential motion equation for SLGS-2 in

terms of W, and W is derived:
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o'w. o'W,
_D11W42_2(D12 D66) 28 2
2
_D226W -2K W, +2K, 6V12/2+6_V12/2 :
oy* ox oy

(aW aWJZCWW

, O, +WW1

—2ukK
# ( 8x28y oy*

#

o'w. 6W+Nm
8x 6x26y oy’

aW oW,
0?2 8x 6y
H—

or’ o'w, o'w, o'w,
-1 T2+ 7
0x Ox~0y oy
a%g+léi yw;+ﬁW;
ot tortl axt 9y

2 2
=—KJ%+K5(6W2+6P?]

_]0

ox oy

(68)

Therefore,
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KS7q,87 (1)+C,874% (1) 0 (1) =2 lw(iﬁjz

i) s (inj i 69 n =" i) (ij -
+m S5 (1) = £.57 (1) (69) ) gf) 4

N4 .
where, a)fll’j) ( - Jcos(mr(ll’j)f )
a
X . .
K D) — —a™) id: Cos s
d2 n a a

(74)

. N\2 . \2
(Z) 7{&]} Using superposition method, ¢,* is
obtained by follow relation:

M. 4 . 4 . 2 . 2
174 jr T jr
—2ukK — | | =] +2| = o y Ny
e (a) (bj (a) ( b )} g%y =q' 57 (1) + 47,57 (1)

+q3d(2i,j) (t)+ q4d(2i,j) (t) (75)

where,

_ _ F(i,/') A(i,j) DD

> . U Gj) (4)
A O N U ~ :
0 a b \/( Kd(zi,j) _md<2i,j>( a)’(li,j)) ) +(Cd(2i,j) a)lgf,/))

. 4 . 4
(M) ¥4 jr @) (i)
m = i J . L ~ C"aw
w A (aj +(b sin| @ft-+tan” ———2
+Iz Kd(Qz,j) _md(zl,j) (a)’(’u./))
J:

(76)

. \2 . \2 N _peD) pfied
wflfE) o ew 2
a b (i) (i) i7er i ) i7er i
Kdz —-m, o + Cdz o
. jzj] a a

- C(i,.f) lﬂ-VP
T d2
(72) sin| L ¢ +tan” a___
@) ( 4\ — pi) (i) @) (i) a | 7,
SO U XU, kom0
7

Derivative of Eq.(37) is obtained as: (77)



174

, _ i) gl
75" ()= — :
\/( K(’ D d;u)( a)ii'j)) ) +(Cd<2f,.f> a)ii’j))

¢ )
(i,j) C ! n
cos| @™t +tan™

K. Dy m((o(,j))2

d2 n

(78)
; F{i,/’)B{i,;/)
g ”(t)— 32 :
(K“” d;!)(”ﬂ/IJJ + C(z,) lﬂV}
a a
inV C(l 7 WV
cos| —L¢+tan™ d -
a i
K(rj) d;l])( pj
a
(79)
where,
—2Pb in\
| TH
pn = 7 a
iV ’ 2
e
a n
(30)
40D = izV,
a w(w')
(81)

(82)
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(el )

(83)
Therefore, the dynamic displacement of
SLGS-2 is derived as:

1 G.j)

iiqun ()+q42 () ]
T\ g J)( )+q4d(21 J)(t) (84)

{on( = (22

The phase of system is obtained as:

2 (i.))

W, (x,p,t)=

&r; 4| 2¢r
@ =tan [1 O, = =tan” 1_22
- —h
(85)
where
iV
o) ’
p=—t—, p=—"t_
1 wgz,,) a)gz,])
ij 86
‘e Cd(2 7 ) (86)
2md<z J)a)ély!)

For cases of =1, derivative of Eq.(40) is

obtained as:

w0 P”( )[m(”jj

—(a} )) tsm(af t) o cos(a),g )

+a),(j’j cos ( a}ni’j )z‘)

Using the superposition method W2 for case

87

of r=1 is obtained.

3. Result and discussions

The values of non-local parameter, Winkler,
Pasternak and damper modulus parameter and
mechanical properties of orthotropic and
isotropic graphene sheet are taken according to

[23]. The maximum static displacement of plate
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subjected to a concentrated force on the middle

of plate is derived according to [3]:

-2
4P L& ((iY (J ]2
Wmax — = +| L
o ztabD ;;(((1) (b
(88)
were,
_ER®
12(1-8%)
(89)
The frequency ratio of system is derived by:
(a)ii’j) )nonflocal
= (i,j) local
(“’n ) (90)

where, the non-local and local natural frequency
are derived by substituting ##0 and =0 into
Eq.(32), respectively. As regards validation of
our work, the SLGS frequency ratio can be
Eq.(90),
consideringK,, =K; =C; =0.

and
the

calculated from

However,

obtained results for the selected values of non-
local parameter are listed in Table 1. As can be
seen, the frequency ratio with increasing non-
local parameter decreases and the results in this
paper are in good agreement with previous
researches.

Table 1. Validation results

Nonlocal Ref. Ref. Present
Parameter [19, 20] 9] paper
W oo o'
nm’ o"/o'
0 1.0000 1.0000  1.000000  1.0000
1 0.9139 0.9139 0913865 0.9139
2 0.8467 0.8468  0.846733  0.8468
3 0.7925 0.7926  0.792509  0.7926

Here, the maximum dynamic displacement to static
displacement of sheets is shown in diagrams as

(W; /W, ) and is called dimensionless displacement.
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The maximum dimensionless displacement of SLGS-1
and SLGS-2 with respect to the Winkler modulus
parameter for various values of non-local parameter is
presented in Fig. 2. It can be seen that, the effect of
Winkler modulus parameter on the maximum dynamic
displacement for SLGS-1 and SLGS-2 is different with
each other, so that by increasing values of Winkler
the
displacement for SLGS-1 decrease whereas, for SLGS-

modulus  parameter, maximum  dynamic
2 increases. For wvalidation this work, it can be
the effects of Winkler modulus

parameter on the maximum dynamic displacement of

expressed that,

SLGSs are in good agreement with performed previous
research on the carbon nano-tube [29].

@)

22 L
0

| | | | |
0.1 0.2 0.3 0.4 0.5 0.6

Winkler Modulus Parameter

b)

—&— =0.5
—v— 4=1.0
—A— =15
—— 4=2.0

. . .
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Winkler Modulus Parameter
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Fig. 2. The maximum dimensionless displacement of
coupled SLGSs versus the Winkler modulus
parameter (a) SLGS-1 (b) SLGS-2

The maximum dimensionless displacement
versus the Pasternak modulus parameter for
various values of non-local parameter is
illustrated in Fig.3. It is evident that, as the
values of Pasternak modulus parameter increase,
the maximum dynamic deflection for SLGS-1
reduces. Also, the maximum dynamic
displacement of SLGS-2 by increasing Pasternak
modulus parameter increases.

(a)

48 —&— =0.5

v 4=1.0

s ‘
50 100 150
Damper Modulus Parameter

(b)
14,
e
13 e
12}
e 111
«
£
=
~ 09
o
E 0.8
—8— =05
0.7+ —v— ﬂ:10
06} ]
e =20
0.5 L L ]
50 100 150

Damper Modulus Parameter
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The maximum dimensionless displacement of
coupled SLGSs versus the shear modulus parameter
(a) SLGS-1 (b) SLGS-2

The effect of damper modulus parameter on the
maximum dynamic displacement for various values of
non-local parameter is shown in Fig. 3. The effect of
damper modulus parameter on the maximum dynamic
responses of SLGS-1 and SLGS-2 is similar to Winkler
and Pasternak modulus parameter effects. The effects of
Winkler, Pasternak and damper modulus parameter on
the dynamic deflections of SLGSs are similar together,
although, the amount of effect for each parameter is
different together. Comparing the influences of
Winkler, Pasternak and damper modulus parameter on
the maximum dynamic displacement, it can be
concluded that the effect of Winkler modulus parameter
is higher than Pasternak modulus parameter on dynamic

displacement of SLGSs and can be expressed as:

(a)

—*— 1=0.0
48f —®— =05

v 4=1.0

/

&
IS

(wl / Wst )max
-
E N

ol
=)
T

w
o
T

I
~

50 100 150
Damper Modulus Parameter

(b)
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i 2.0 0.3328 0.4049
1al 3.0 0.3174 0.3838
12]

il The maximum dynamic displacements of
~§ it various systems are compared in Table 3. all
EN 0o} assumed systems are considered subjected to
Z osf iﬁizg moving nano-particle: System 1: SLGS without

o7y v L0 any foundation. System 2: Coupled system of
°er :i;j SLGSs by the Visco-Pasternak medium. (The
*% 5 100 150 maximum stiffness is considered for coupled

Damper Modulus Parameter

. . . ) medium. In other words, the maximum values of
Fig. 3. The dimensionless displacement with respect

to the damper modulus parameter for (a) SLGS-1 (b) Winkler, Pasternak and  damper modulus
SLGS-2 parameter for medium between SLGSs are

investigated.) System 3. Double-layered of
The natural frequency of system for isotropic and graphene sheet with linear vdW force between
orthotropic structure of SLGSs is compared in Table 2. two sheets.

It can be seen, the natural frequency of orthotropic

structure of SLGSs is higher than that isotropic Table 3. Comparing the maximum dynamic
the displacement of SLGS, Coupled System of SLGSs,

. . . . Double-L d Graphene Sheet
orthotropic structure of SLGSs is more rigid than oube--ayered Urapacne Snce

isotropic structure of that in coupled system of SLGSs. _
The maximum dynamic displacement of SLGSs with

structure therefore, can be expressed that,

0.0 4.5804 2.2291 2.2896
respect to damper modulus parameter for various 05 47720 23281 23855
structures of that is plotted in Fig.5. It can be observed 1.0 4.9638 24267 24814
that, the maximum dynamic displacements of 1.5 5.1556 2.5250 2.5773
orthotropic SLGSs is lower than that isotropic SLGSs 2.0 5.3474 2.6229 2.6732
for all values of non-local parameter, perhaps it is due 25 5.5390  2.7204 2.7691
to the stiffness of orthotropic structure is more than that 3.0 5.7308 2.8178 2.8650

isotropic SLGSs.

Error! Reference source not found. Fig. 5. The 1t can be observed that, the maximum dynamic

effect of damper constant on maximum dimensionless ~ displacements of system 2 and 3 are equal to each

displacement of (a) SLGS-1 (b) SLGS-2. other, approximately. Also, the results indicate
that, the maximum dynamic displacements of

Table 2. Comparing the natural frequency of system system 2 and 3 almost are half value of that for
for isotropic and orthotropic structure system 1. It is due to the rigidity (bending
stiffness) of system 2 and 3 is twice of that for
system 1.
(a)

0.0 0.3777 0.4656
1.0 0.3523 0.4313
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Fig. 6. The effect of aspect ratio (a/b) on the maximum
dynamic displacement for (a) SLGS-1 (b) SLGS-2

The effect of aspect ratio of SLGSs (a/b) on the
maximum dynamic displacement for various Winkler
modulus parameter is plotted as a diagram in Fig. .
The results indicate that by increasing the aspect ratio
of SLGSs, the effect of Winkler modulus parameter
(stiffness of medium) on the maximum dynamic
displacement decreases. In other words, by increasing
the scale of SLGSs, the effect of moving nano-particle
and medium stiffness coefficient on SLGSs reduces.

4. Conclusion
In this paper, forced-vibration analysis of a
coupled system of SLGSs by the Visco-

Pasternak medium subjected to a moving nano-

A. Ghorbanpour-Arani et al./ JNS 3(2013) 161-180

particle is performed by the non-local elasticity
theory of orthotropic plate. The Hamilton’s
principle is used for deriving the governing
differential equations of motion. Moving the
nano-particle on upper SLGS is assumed as the
linear movement with constant velocity from an
edge of SLGS to another edge. The governing
differential equations of motion are solved by an
analytical method and the closed-form solution
of dynamic displacement of SLGSs is presented.
The effect of various parameters such as: non-
local parameter, Winkler, Pasternak, damper
modulus parameters, isotropic and orthotropic
structures of sheets, aspect ratio of SLGSs (a/b),
velocity and time parameter are discussed and
compared with each other. From this work
following conclusions are drawn:

1. The maximum dynamic displacement of
upper sheet (SLGS-1) by increasing values of
Winkler, Pasternak and damper modulus
parameter decrease. Whereas, as the visco-
elastic medium between two sheets becomes
more rigid (strong coupled medium), the
maximum dynamic responses of bottom sheet
(SLGS-2) increase.

2. The dynamic deflections derived by the
classical theory of plate (z=0) for both of

SLGSs are smaller than those derived by the
non-local theory (u#0). In other words, as the
values of non-local parameter increase, the
dynamic responses of SLGSs decrease. It is due
to small scale effect on the dynamic
displacement of SLGSs.

3. The natural frequency of coupled system
with orthotropic structure is more than that with
isotropic structure. In other words, the rigidity of
isotropic structure in this system less than

orthotropic structure of that. Therefore, the
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dynamic deflections of orthotropic SLGSs are

smaller than those isotropic SLGSs.
4. By increasing the stiffness of medium
between two sheets, the values of dynamic
displacement of SLGS-1 decrease, so that, the
values of that for SLGS-2 increase. If the stiffness
of medium between two sheets is considered
maximum of that, the maximum deflections of
SLGSs are equal with each other just like a
double-layered of SLGS. The maximum dynamic
deflections of SLGS are twice of that for coupled
system of SLGSs and double-layered SLGS. It is
due to rigidity of coupled system of SLGSs and
double-layered SLGS is half of that for SLGS.
5. The presented closed-form solutions of
dynamic deflection for SLGSs are very useful to
study dynamic behavior of coupled system or
double-layered of SLGSs subjected to moving

nano-particle.
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