Forced-Vibration Analysis of a Coupled System of SLGSs by Visco- Pasternak Medium Subjected to a Moving Nano-particle

Document Type: Research Paper

Authors

1 Faculty of Mechanical Engineering, Institute of Nanoscience&Nanotechnology,University of Kashan,Kashan, I.R.Iran.

2 Faculty of Mechanical Engineering

10.7508/jns.2013.02.005

Abstract

In this study, forced-vibration analysis of a coupled system of single layered graphene sheets (SLGSs) subjected to the moving nano-particle is carried out based on nonlocal elasticity theory of orthotropic plate. Two SLGSs are coupled with elastic medium which is simulated by Pasternak and Visco-Pasternak models. Using Hamilton’s principle, governing differential equations of motion are derived and solved analytically. The effects of small scale, aspect ratio, velocity of nano-particle, time parameter, mechanical properties of graphene sheets, Visco-elastic medium on the maximum dynamic responses of each SLGSs are studied. Results indicate that, if the medium (elastic or visco-elastic medium) of coupled system becomes more rigid, the maximum dynamic displacements of both SLGSs will be closer together.

Keywords


[1] K. Sellers, C. Mackay, L.L. Bergeson, S.R. Clough, M. Hoyt, J. Chen, K. Henry, J. Hamblen, Nanotechnology and the Environment, CRC Press, 2008.

[2] J.N. Reddy, Mechanics of laminated composite plates and shells, CRC press LLC, New York, 2003.

[3] S. Timoshenko, Theory Of plates and shells, Secound Edition ed., McGraw-Hill, 1959.

[4] J.R. VINSON, Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction, Springer, Netherlands., 2005.

[5] A.C. Eringen, Int. J. Eng. Sci., 10 (1972) 1-16.

[6] A.C. Eringen, J. Appl. Phys., 54 (1983) 4703–4710.

[7] A.C. Eringen, Nonlocal Continuum Field Theories, Springer-Verlag, New York, 2002.

[8] A.C. Eringen, D.G.B. Edelen, Int. J. Eng. Sci., 10  233–248.

[9] S.C. Pradhan, J.K. Phadikar, J. Sound Vib., 325 (2009) 206-223.

[10] T. Murmu, S. Adhikari, Composites Part B, 42 (2011) 1901-1911.

[11] T. Murmu, S.C. Pradhan, Physica E, 41 (2009) 1628-1633.

[12] A. Sakhaee-Pour, M.T. Ahmadian, A. Vafai, Solid State Commun., 145 (2008) 168-172.

[13] R. Ansari, S. Sahmani, B. Arash, Phys. Lett. A, 375 (2010) 53-62.

[14] C. shu, Diffrential quadrature and its application in engineering, springer, 1999.

[15] C. Shu, H. Du, Compos. Technol. Part B., 28 (1997) 267.

[16] Z. Zong, Y. Zhang, Advanced Diffrential Quadrature Methods, CRC Press, New York, 2009.

[17] R. Ansari, B. Arash, H. Rouhi, Compos. Struct., 93 (2011) 2419-2429.

[18] R. Ansari, R. Rajabiehfard, B. Arash, Comput. Mater. Sci., 49 (2010) 831-838.

[19] S.C. Pradhan, A. Kumar, Compos. Struct., 93 (2011) 774-779.

[20] S.C. Pradhan, A. Kumar, Comput. Mater. Sci., 50 (2010) 239-245.

[21] K. Behfar, R. Naghdabadi, Compos. Sci. Technol., 65 (2005) 1159-1164.

[22] R.-D. Chien, C.-S. Chen, Compos. Struct., 70 (2005) 90-99.

[23] A. Ghorbanpour Arani, A. Shiravand, M. Rahi, R. Kolahchi, Physica B, 407 (2012) 4123-4131.

[24] K. Kiani, H. Ghaffari, B. Mehri, Curr. Appl Phys.,13(2012) 107-120.

[25] K. Kiani, Physica E, 42 (2010) 2391-2401.

[26] K. Kiani, J. Sound Vib., 330 (2011) 4896-4914.

[27] K. Kiani, Physica E, 44 (2011) 229-248.

[28] K. Kiani, Physica E, 44 (2011) 249-269.

[29] M. Şimşek, Comput. Mater. Sci., 50 (2011) 2112-2123.

[30] A. Ghorbanpour Arani, M.A. Roudbari, S. Amir, Physica B, 407 (2012) 3646-3653.