Synthesis and Characterization of Copper Indium Sulfide Chalcopyrite Structure with Hot Injection Method

Document Type: Research Paper

Authors

1 School of Metallurgy and Material Engineering, Iran University of Science and Technology, Tehran 16844, Iran. Material Research Department, Engineering research Institute, Tehran , 16844, Iran.

2 School of Metallurgy and Material Engineering, Iran University of Science and Technology, Tehran 16844, Iran.

3 Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran.

10.7508/jns.2013.02.003

Abstract

In this investigation, CuInS2 ternary compound was synthesized by injection of thiourea solution into a hot copper-indium solution. The CuCl, InCl3 along with (SC (NH2)2) were used as a precursor dissolved in high boiling point solvent such as oleylamine (CH(CH2)17NH2) and oleic acid (CH(CH2)16COOH) as a coordination solvent and capping agent, respectively. The size, distribution and shape were optimized by controlling some parameters such as the ratio of solvent to capping agent, anion and cation solution temperature in the instant of injection. The crystal structure, morphology, and optical properties of synthesized nanoparticles were characterized using XRD, TEM, UV-VIS-NIR and PL. The results indicate that the temperature of the solution in the instant of injection has a significant effect on the tuning of the nanocrystals size as well as narrow size distribution.

Keywords


[1] W. Du, X. Qian, J. Yin, Q. Gong, Chem. Eur. J. 13 (2007) 8840-8846.

[2] J. Tang, S. Hinds, S. O. Kelley, E. H. Sargent, Chem. Mat. 20 (2008) 6906-6910.

[3] C. Jackson Stolle, M. G. Panthani, T. B. Harvey, V. A. Akhavan, B. A. Korgel, Appl. Mater. Interfaces 4 (2012) 2757-2761.

[4] V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, C. Steinhagen, T. B. Harvey, C. J. Stolle, B. A. Korgel, J. Solid State Chem. 189 (2012) 2-12.

[5] X. Sheng, L. Wang, Y. Luo, D. Yang, Nanoscale Research Letters 6 (2007) 562.

[6] T. L. Li, H. Teng, J. Mater. Chem. 20 (2007) 3656-3664.

[7] Y. Vahidshad, R. Ghasemzadeh, A. Irajizad, M. Mirkazemi, A. Masoud, J. Nanostruc. 2 (2012) 369-377.

[8] L. H. Tao, Z. J. Song, L. B. Feng, L. X. Juan, Y. X. Yu, J. H. Dong, Y. Fan, X. W. Dong, Chin. Phys. Letter 28 (2011) 057702.

[9] F. B. Dejene, Solar Energy Mater. & Solar Cells 93 (2009) 577-582.

[10] S. Siebentritt, Solar Energy 77 (2004) 767-775.

[11] S. Jost, R. Schurr, A. Hölzing, F. Hergert, R. Hock, M. Purwins, J. Palm, Thin Solid Films 517 (2009) 2136-2139.

[12] T. Koehler, S. Gledhill, A. Grimm, N. Allsop, C. Camus, A. Hänsel, W. Bohne, J. Röhrich, M. L. Steiner, C. H. Fischer, Thin Solid Films 517 (2009) 3332-3339.

[13] R. Cayzac, F. Boulch, M. Bendahan, M. Pasquinelli, P. Knauth, C. R. Chimie 11 (2008) 1016-1022.

[14] B. Asenjo, A. M. Chaparro, M. T. Gutiérrez, J. Herrero, Thin Solid Films 511 (2006) 117-120.

[15] F. Cui, L. Wang, Z. Xi, Y. Sun, D. Yang, J. Mater. Sci. Mater. Elect. 20 (2009) 609-613.

[16] M. Yousefi, M. Sabet, M. Salavati-Niasari, S. M. Hosseinpour-Mashkani, J. Cluster Sci. 23 (2012) 491-502.

[17] V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, C. Steinhagen, T. B. Harvey, C. J. Stolle, B. A. Korgel, J. Solid State Chem. 189 (2012) 2-12.

[18] Z. Zhou, S. Yuan, J. Fan, Z. Hou, W. Zhou, Z. Du, S. Wu, Nanoscale Research Letters 7 (2012) 652.

[19] J. Tang, S. Hinds, S. O. Kelley, E. H. Sargent, Chem. Mater. 20 (2008) 6906-6910.

[20] R. Sharma, S. Shim, R. S. Mane, T. Ganesh, A. Ghule, G. Cai, D. H. Ham, S. K. Minb,W. Lee, S. H. Han, Mater. Chem. Phys. 116 (2009) 28-33.

[21] W. Du, X. Qian, J. Yin, Q. Gong, Chem. Eur. J. 13 (2007) 8840-8846.

[22] B. Koo, R. N. Patel, B. A. Korgel, J. A. Chem. Soc. 131 (2009) 3134-3135.

[23] R. Swanepoel, J. Phys. E: Sci. Instrum. 16 (2007) 1214-1222.

[24] J. C. W. Ho, S. K. Batabyal, S. S. Pramana, J. Lum, V. T. Pham, D. Li, Q. Xiong, A. I. Y. Tok, L. H. Wong1, Mater. Express 2 (2012) 344-350.

[25] X. Lu, Z. Zhuang, Q. Peng, Y. Li, Cryst. Eng. Comm. 13 (2011) 4039-4045.

[26] W. C. Huang, C. H. Tseng, S. H. Chang, H. Y. Tuan, C. C. Chiang, L. M. Lyu, M. H. Huang, Langmuir 28 (2012) 8496-8501.

[27] A. E. Rakhshani, J. Appl. Phys. 81 (1997) 7988-7993.

[28] Y. Vahidshad, A. Irajizad, R. Ghasemzadeh, S. M. Mirkazemi, A. Masoud, Inter. J. Mod. Phys. B 26 (2012) 1250179-1250191.

[29] S. Han, M. Kong, Y. Guo, M. Wang, Mater. Letters 63 (2009) 1192-1194.

[30] S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, Y. Cui, J. A. Chem. Soc. 131 (2009) 4962-4966.

[31] N. Bao, X. Qiu, Y. H. A. Wang, Z. Zhou, X. Lu, C. A. Grimes, A. Gupta, Commun. 47 (2011) 9441-9443.

[32] M. Kruszynska, H. Borchert, J. Parisi, J. K. Olesiak, J. A. Chem. Soc. 132 (2010) 15976-15986.

[33] S. Lei, C. Wang, L. Liu, D. Guo, C. Wang, Q. Tang, B. Cheng, Y. Xiao, L. Zhou, Chem. Mater. 25 (2013) 25 2991-2997.

[34] M. Deng, S. Shen, X. Wang, Y. Zhang, H. Xu, T. Zhang, Q. Wang, Cryst. Eng. Comm. 15 (2013) 6443-6447.

[35] S. Mourdikoudis, L. M. L. Marzán, Chem. Mater. 25 (2013) 1465-1476.

[36] B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor, Chem. Rev. 104 (2004) 3893-3946.

[37] P. ShengJie, L. Y. Liang, C. F. Yi, L. I. Jing, Sci. China Chem. 55 (2012) 1236-1241.

[38] Q. hang, J. J. Wang,   Z. Jiang,  Y. G. Guo,   L. J. Wan, Z. Xiea, L. Zheng, J. Mater. Chem. 22 (2012) 1765-1769.

[39] Y. Luo, G. Chang, W. Lu, X. Sun, Coll. J. 72 (2010) 282-285.

[40] S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, Y. Cui, J. A. Chem. Soc. 131 (2009) 4962-4966.

[41] D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, Y. Lu, J. A. Chem. Soc. 130 (2008) 5620-5621.

[42] M. Kruszynska, H. Borchert, J. Parisi, J. K. Olesiak, J. A. Chem. Soc. 132 (2010) 15976-15986.

[43] K. T. Yong, I. Roy, R. Hu, H. Ding, H. Cai, J. Zhu, X. Zhang, E. J. Bergeya, P. N. Prasad, Integr. Biol. 2 (2010) 121-129.

[44] J. Van Gheluwe, J. Versluys, D. Poelman, J. Verschraegen, M. Burgelman, P. Clauws, Thin Solid Films 511-512 (2006) 304-308.