Calculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method

Document Type: Research Paper

Authors

Department of Optics and Laser Engineering, University of Bonab, 5551761167 Bonab, Iran.

10.7508/jns.2013.02.001

Abstract

In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA) method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of the nanoparticle, the induced charge distribution on the nanoparticle surface has been calculated. In our calculations, we have exploited the experimental data obtained by Johnson and Christy for dielectric function.

Keywords


[1] L. Rayleigh, Philos. Mag. 47 (1899) 375–384.

[2] P. Drude, Ann. Phys. 14 (1904) 936–961.

[3] J. C. M. Garnett, Philos. Trans. R. Soc. Lond. A 203 (1904) 385–420.

[4] G. Mie, Ann. Phys. 25 (1908) 377–445.

[5] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-VCH, New York, 1998.

[6] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25, Springer Verlag, Berlin-Heidelberg, 1995.

[7] M. Mishchenko, L. Travis and D. Mackowski, J. Quant. Spectrosc. Radiat. Transfer. 55 (1996) 535–575.

[8] S. A. Maier, P. G. Kik and H. A. Atwater, Phys. Rev. B 67 (2003) 205402.

[9] T. Jensen, L. Kelly, A. Lazarides and G. C. Schatz, J. Cluster Sci. 10 (1999) 295–317.

[10] E. Moreno, D. Erni, C. Hafner and R. Vahldieck, J. Opt. Soc. Am. A 19 (2002) 101–111.

[11] A. A. Lazarides and G. C. Schatz, J. Chem. Phys. 112 (2000) 2987–2993.

[12] K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B 107 (2003) 668–677.

[13] E. M. Purcell and C. R. Pennypacker, Astrophys. J. 186 (1973) 705–714.

[14] B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A 11 (1994) 1491–1499.

[15] B. T. Draine and P. J. Flatau, User guide to the discrete dipole approximation code DDSCAT 7.3, arXiv: 1305.6497 (2013).

[16] P. J. Flatau and B. T. Draine, Opt. Express 20 (2012) 1247–1252.

[17] F. Abdi, A. Siabi-Gerjan and H. Savaloni, J. Theor. Appl. Phys. 6 (2012) 1–10.

[18] P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Bohmer, C. Rangan and S. Mittler, Phys. Rev. B 77 (2008) 235446.

[19] M. Alsawafta, M. Wahbeh and V. V. Truong, J. Nanomater. 2012 (2012) 457968.

[20] R. Marty, G. Baffou, A. Arbouet, C. Girard and R. Quidant, Opt. Express 18 (2010) 3035–3044.