Preparation and Characterization of a Cotton-Based Nanocomposite Hydrogel

Document Type: Research Paper

Authors

Chemistry Department, Payame Noor University, 19395-4697, Tehran, Iran.

10.7508/jns.2013.01.009

Abstract

In this work, hydrogel nanocomposites were synthesized by solution polymerization of acrylic acid (AA) and itaconic acid (IA) in the presence of cotton fabric. Ammonium persulfate (APS) was used as the polymerization initiator in the presence of a crosslinker, methylene bisacrylamide (MBA). Insertion of Ag followed by reduction of Ag+ cations results in a hydrogel nanocomposite. The structure and morphology of the resulting Ag nanoparticle-loaded grafted fabric was characterized by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The influence of both APS and MBA concentration on the swelling capacity of nanocomposites was also studied.

Keywords


[1] B. C. Gates, Chem. Rev. 95 (1995) 511.

[2] M. A. EI-Sayed, Acc. Chem. Res. 34 (2001) 257.

[3] H. Chen, J. H. Lee, Y. H. Kim, D. W. Shin, S.Ch. Park, X. Meng, J.B. Yoo, J. Nanosci. Nanotechnol. 10 (2010) 629.

[4] B. Tyliszezak, K. Pielichowski, J. Polym. Res., 20 (2013) 191.

[5] P.D. Pardeshi, S.G. Manjrekar, "Medical Textiles: New Avenue of Textile Applications", The Indian Textile Journal, (2002) 13-22.

[6] J.X. Zhou, F. Zhao, Development and Application of Metalized Textile Materials. Shanghai Textile Sci. Technol. 2001.

[7] S. K. Bajpai, V. Thomas, M. Bajpai, J. Eng. Fiber. Fabric. 6 (2011) 73.

[8] M. H. El-Rafie, A. A. Mohamed, Th. Shaheen, A. Hebeish. A. Carbohyd. Polym. 80 (2010) 779.

[9] Q. Li, Sh. L. Chen, W.Ch. Jiang, J. Appl. Polym. Sci. 103 (2007) 412.

[10] Y. Kitkulnumchai, A. Ajavakom, M. Sukwattanasinitt, Cellulose 15 (2008) 599.

[11] N. Abidi, L. Cabrales, E. Hequet, Appl. Mater. Interfaces, 1 (2009) 2141.

[12] J. Sorapong, W. Ruangsri, W. Surasak, G. Peter, A. Orn Anong, N. Wimol, N. Dyes Pigments 71 (2006) 188.

[13] F. L. Buchholz, A. T. Graham, Modern Superabsorbent Polymer Technology. Elsevier: Amsterdam, 1997.

[14] R. Po, J. Macromol. Sci-Rev. Macromol. Chem. Phys. 34 (1994) 607.

[15] Y. H. Zhou, Y. P. Zhang, W. F. Zhang, X. G. Chen, Carbohyd. Polym. 83 (2011) 1643.

[16] S. H. Huixia, W. Wang, A. Wang, Appl. Clay Sci. 50(2010) 112 .

[17] V. Raghavendra, V. Kulkarni, S. Mutalik, M. Setty, B. Sa, Internat. J. Biolog. Macromol. 47(2010) 520.

[18] K. Hori, C. Sotozono, J. Hamuro, K. Yamasaki, Y. Kimura, M. Ozeki, Y. Tabata, S.  Kinoshita, J. Control. Rel. 118 (2007) 169.

[19] J. P. Zhang, Q. Wang, A. Q. Wang, Carbohyd. Polym. 68 (2007) 367.

[20] I. Galaev, B. Mattiasson, Smart Hydrogels, in: Smart Polymers, Applications in Biotechnology and Biomedicine, Second Edition, CRC Press, Taylor & Francis Group, 2007.

[21] S. Selvam, R.R. Gandhi, J. Suresh, S. Gowri, S. Ravikumar, M. Sundrarajan, M. Inter. J. Pharm. 434 (2012) 366.

[22] P.J. Flory, Principles of Polymer Chemistry; Ithaca, Cornell University Press, New York, 1953.