Synthesis, Characterization and Catalytic Activity of CuO Nanostructures using Schiff Base Copper Complexes as a Precursor

Document Type: Research Paper

Authors

1 Department of Chemistry, Payame Noor University, 19395-4697, Tehran, I.R. of Iran

2 Shahid Bakeri High education Center of Miandoab,Urmia University,Urmia,Iran

3 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

10.7508/jns.2013.01.005

Abstract

Two Cu(II) complexes, [Cu(L1)2](NO3)2 (1) and [Cu(L2)2] (NO3)2(2), which L1 and L2 Schiff base ligands are 2-(thiophene-2-yl) -1H-imidazo [4,5-f] [1,10] phenanthroline and 2-(furane-2-yl)-1H-imidazo[4,5-f] [1,10] phenenthroline, respectively, were synthesized and characterized by physico - chemical and spectroscopic methods. Corresponded CuO nanoparticles were prepared by calcination of the obtained complexes at 500˚C. The structure of nano sized copper oxides were characterized by X- ray diffraction (XRD) and scanning electron microscopy (SEM). Electrocatalytic oxidation of acetylcholine (ACh) on copper oxide nanostructures were investigated. The results showed that acetylcholine (ACh) was oxidized irreversibly on copper oxide nanostructures with an excellent catalytic activity.

Keywords


[1] L. Sacconi, Coord. Chem. Rev 1(1966) 126-132.                                

[2] L. Canali, D. C. Sherrintong, Chem. Soc. Rev 28 (1999) 85-93.     

[3] H. Chao, Y.-X. Yuan, L.-N. Ji, Transition Met. Chem 29 (2004) 774-779.     

[4] Y. Wei, Y. Yu, K. Wu, Cryst. Growth Des 7 (2007) 2262-2264.       

[5] X.G. Zheng, C. N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, Y. Soejima,  Phys. Rev. Lett 85 (2000) 5170-5173.

[6] A. B. Kuz’menko, D. van der Marel, P. J. M. Van Bentum, E.A. Tishchenko, C. Presura, A. Bush, Phys. Rev. B 63(2001)  094303-   094318.     

[7] J. Tamaki, K. Shimanoc, Y. Yamada, Y. Yamamoto, N. Miura, N. Yamazoe,  Actuators B  49 (1998)121-125.

[8] J. Chen, S.Z.  Deng, N. S. Xu, W. X. Zhang, X.G. Wen, S. H. Yang, Appl. Phys. Lett 83 (2003) 746-749.     

[9] M. Hossain, S. K. Chattopadhyay, S. Ghosh, Polyhedron 16 (1997) 1793-1802.    

[10] S. Chandra, L. K. Gupta, Spectrochim. Acta  A 60 (2004) 3079-3085.

[11] M. Shakir, S. P. Varkey, P. S. Hameed, Polyhedron 12(1993) 2775-2780.

[12] F. A. Cotton, J. J. Wise, Inorg. Chem 5 (1967) 1200-1207.

[13] S. Farhadi, J. Safabakhsh, J. Alloys Compd 515 (2012) 180 – 185.

[14] M. Salavati - Niasari, F. Davar, M. Mazaheri, Mater. Lett 62 (2008) 1890 –1892.

[15]  M. Salavati - Niasari, F. Davar, Mater. Lett 63 (2009) 441– 443.

[16] M. Salavati - Niasari, F. Davar, M. Mazaheri, J. Alloys Compd 470 (2009) 502–506.

[17] F. Davar, Z. Fereshteh, M. Salavati - Niasari, J. Alloys Compd 476 (2009) 797–801.

[18] M. Salavati - Niasari, Z. Fereshteh, F. Davar, Polyhedron 28 (2009) 1065–1068.

[19] M. Khansari, A. Salavati - Niasari, F.

Davar, Inorg. Chim. Acta 362 (2009) 4937–4942. 

[20] M. Salavati - Niasari, N. Mir, F.Davar, J. Phys. Chem. Solids 70 (2009) 847–852.

[21] H. Wang, J-Z. Xu, J-J. Zhu, H-Y. Chen, J. Cryst. Growth 244 (2002) 88–94.

[22] S.M. Sine, Physiol. Rev 92 (2012) 1189-234.

[23] S. M. A. Shibli, K. S. Beenakumari, Electroanalysis 18 (2006) 465- 470.