Fabrication, and Effect of Reflux time on Structural Properties of Pure and Al-Doped TiO2 Nano-rod

Document Type: Research Paper


Department of Engineering, Tonekabon branch, Islamic Azad University, Tonekabon, Iran.



TiO2 nanorods can be used as dye-sensitized solar cells and as various sensors and photocatalysts. These nanorods are synthesized by a using thermal corrosion process in a NaOH solution at 200 oC with TiO2 powder as a source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti8O15 phases and the synthesis of TiO2 nanorods by using the sol-gel method and alkaline corrosion to incorporate aluminum oxide dopant are reported. The morphologies and the crystalline structures of the TiO2 nanorods are characterized using field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), and X-ray diffraction (XRD) techniques.


[1] A. Y. Kim, M. Kang, Int. J. Photoenergy. 10 (2012) 1155-1164.

[2] H. F. Lai, C. C. Chen. , J. R. Wu, S. C. Lu, J. Chinese Chemical Soc. 59 (2012) 78-89.

[3] A. Loiudice , A. Rizzo , L. D. Marco , M. R. Belviso, G. Caputo, P. D. Cozzoli, J. Phys. Chem. 21 (2012) 3987-3995. 

[4] M. Riazian, A. Bahari, , Pramana J. Phys. 78 (2012) 319-331.

[5] M. Riazian, A. Bahari, Int. J. Physical Sci. 6 (2011) 3756-3767.

[6] M. Riazian, N. Montazeri, E. Biazar, Oriental J. Chem. 27 (2011) 903-910.

[7] A. Bahari, M. Riazian, Int. J. Nano Dimensions. 3 (2012) 127-139.

[8] D. N. Gupta, K. R. Sahu, I. Das, A. De, U. De, Indian J. Phys. 84 (2010) 1413-1429.

[9] M. R. Vaezi, S. K.Shendy, T. J. Ebadzadeh,Indian J. Phys. 86(2012) 9-13.

[10] L. A. O’Dell, S. L. P. Savin, A. V. Chadwick, M. E. Smith, Nanotechnology. 16 (2005) 1836-1843.

[11] A. V. Chadwick, S. L. P. Savin, L. A. O’Dell, M. E. Smith, J. Phys.: Condens. Matter. 18 (2006) 163-170.

[12] N. Iguchi, C. Cady, R. Snoeberger, B. Hunter, E. Sproviero, C. Schmuttenmaer, R. Crabtree, G. Brudvig, V. S. Batista, Physical Chemistry of Interfaces and Nanomaterials VII, Proc. Of  SPIE 70340, 2008.

[13] Y. Xie, H. Qian, Y. Zhong, H. Guo, Y. Hu,Int. J. Photoenergy. 10 (2012) 682138-10.

[14] R. Jayasinghe, A. G. Unil Perera, Y. Zhao, Bull. American Phys. Soc. 57 (2012) 93-109.

[15] J. Qiu, F. Zhuge, Xn. Li, X. Gao, X. Gan, L. Li, B. Weng, Z. Shi, Y. Hwae, J. Mat. Chem. 22 (2012) 3544-3549.

[16] M. A. Pugachevskii, Phys. Astronomy. 38 (2012) 328-331.

[17] H. Wang, Y. Liu, Z. Liu, H. Xu, Y. Deng, H. Shen, Cryst. Eng. Comm., 14 (2012) 2278-2282.

[18] E. J. Schwalbach, S. H. Davis, P. W. Voorhees, J. A. Warren, D. Wheeler, J. Applied Phys. 111 (2012) 24302-10.

[19] S. R. Gajjela, C. Yap, M. Grätzel, P. Balaya, Energy Environ. Sci. 3 (2011) 838-845.

[20] S. Mitra, A. Mandal, S. Banerjee, A. Datta, S. Bhattacharya, A. Bose, D. Chakravorty, Indian J.  Phys.85 (2011) 649-666.

[21] H. Rath, S. Anand, M. Mohapatra, P. Dash, T. Som, U. P. Singh, N. C. Mishra, Indian J. Phys. 83 (2009) 559-565.

[22] M. Raizian, S. D. Rad, R. Ramezani, J. Phys. Soc. 62 (2013) 459-468.

[23] M. Riazian, Indian J. Phys. accepted (2013) DOI 10.1007/s12648-013-0323-3.

[24] B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, D. A. Drabold, J. Mater. Sci. 12 (2012) 6439-6445.

[25] Q. Li, B. Liu, L. Wang, D. Li, R. Liu, B. Zou, T. Cui, G. Zou, Mater. Sci. 900 (2012) 1823-1828.

[26] J. G. Li, T. Ishigaki, X. Sun, J. Phys. Chem. C. 111 (2007) 4969-4976.

[27] A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles, J. P. Jolivet, J. Mater. Chem. 11 (2001) 1116-1121.

[28] A. K. Zak, W. H. Majid, M. E. Abrishami, R. Yousefi, Solid State Sci. 13(2011)  251-256.

[29] M. Inagaki, R. Nonaka, B. Tryba, A. W. Morawski, Chemosphere. 64 (2006) 437-444.

[30] J. Ivancoa, T. Haberb, J. R. Krenna, F. P. Netzera, R. Reselb, M. G. Ramseya, Surf. Sci. 601 (2007) 178-187.