Magnetic Properties of Ni0.3Fe0.7 Alloy Nanowires

Document Type: Research Paper

Authors

1 Department of Physics, University of Kashan, Kashan, P. O. Box. 87317–51167, Iran ,Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, P. O. Box. 87317–51167, Iran

2 Department of Physics, University of Kashan, Kashan, P. O. Box. 87317–51167, Iran

3 Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, P. O. Box. 87317–51167, Iran

10.7508/jns.2013.01.002

Abstract

The effect of length variation on the magnetic properties of NiFe alloy nanowires electrodeposited into the alumina template was investigated. The diameter (45±2.5 nm) and length (~ 1.9, 7.12, 8.3, 9.5 and 13.3 µm) of the nanowires were estimated from scanning electron microscopy images. Energy dispersive spectroscopy results showed Ni3Fe7 composition of the alloy nanowires.  The magnetic properties of the samples were investigated by vibrating sample magnetometer. It showed that with increasing the length of the nanowires from 1.9±0.1µm to 13.3±0.66 µm, coercivity reduced from 1050 Oe to 705 Oe and squareness reduced from 0.64 to 0.46. The results proved increasing the magnetostatic interaction between the nanowires with length. Progress toward the multi-domain behavior was predicted caused to drastically reduce in the coercivity.

Keywords


[1] A. P. Li, F. Müller, A. Bimer, K. Nielsch, U. Gösele, Adv. Mater. 11 (1999) 483-487.

[2] H. Masuda, K. Fukuda, Science. 268 (1995) 1466-1468.

[3] G. D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, J. P. Celis, J. Electrochem. 149 (2002) D97-103.

[4] T. M. Whitney, J. S. Jiang, P. C. Searson, C. L. Chien, Science. 261 (1993)1316-1319.

[5] M. Darques, L. Piraux, A. Encinas, P. BayleGuillemaud, A. Popa, U. Ebels, Appl. Phys. Lett. 86 (2005) 072508-072511.

[6] D. Golodnitsky, N. V. Gudin, G. A. Volyanuk, Plat. Surf. Finish. 85 (1998) 65-70.

[7] A. N. Correia, S. A. S. Machado, Electrochim. Acta. 45 (2000) 1733-1740.

[8] L. Sun, P. C. Searson, Appl. Phys. Lett. 74 (1999) 2803-2806.

[9] Q. F. Liu, C. X. Gao, J. J. Xiao, D. S. Xue, J. Magn. Magn.Mater. 260 (2003) 151-155.

[10] D. Jain, H. K. Daima, S. Kachwaha, S. L. Kothari, Dig. J. Nanomater. Bios. 4 (2009) 557-563.

[11] R. Lavín, J. C. Denardin, J. Escrig, D. Altbir,  A. Cortés, H. Gómez, IEEE TRANSACTIONS ON MAGNETICS,44( 2008)  1-5

[12] O. C. Trusca, D.Cimpoesu,  J.H. Lim,  X. Zhang,  J. B. Wiley, IEEE TRANSACTIONS ON MAGNETICS, 44 (2010) 2730-2733.

[13] F. E. Atalay, H. Kaya, S.u. Atalay , S.u.Tari, J. Alloys  Compd, 469 (2009) 458–463

[14] M. Ciureanu, F. Béron, P. Ciureanu, R. W. Cochrane, D. Ménard, A. Sklyuyev. A. Yelon, J. Nanoscience and Nanotechnology. 8 (2008) 5725–5732

[15] M. Almasi Kashi,S. Alikhanzadeh Arani, A. Ramazani, J.Current Appl. Phys.(2012).