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Abstract 
Thin films of SnO2 nanowires were successfully prepared by 
using chemical vapor deposition (CVD) process on quartz 
substrates. Afterwards, a thin layer of palladium (Pd) as a 
catalyst was coated on top of nanowires. For the deposition of 
Pd, a simple and low cost technique of spray pyrolysis was 
employed, which caused an intensive enhancement on the 
sensing response of fabricated sensors. Prepared sensor devices 
were exposed to liquid petroleum gas (LPG) and vapor of 
ethanol (C2H5OH). Results indicate that SnO2 nanowires sensors 
coated with Pd as a catalyst show decreasing in response time 
(~40s) to 1000ppm of LPG at a relatively low operating 
temperature (200oC). SnO2 /Pd nanowire devices show gas 
sensing response time and recovery time as short as 50s and 10s 
respectively with a high sensitivity value of ~120 for C2H5OH, 
that is remarkable in comparison with other reports.  

2013 JNS All rights reserved 

Article history: 
Received 13/1/2013 
Accepted 26/2/2013 
Published online 1/3/2013 

Keywords: 
Chemical vapor deposition 
Gas sensor 
Nanowires 
Response time 
Spray pyrolysis 

*Corresponding author: 
E-mail address: 
maryambarzegar1985@gmail.com  
Phone: 98 935 3915763 
Fax: +982733334419 

1. Introduction 
Applications of chemical gas sensors include 

environmental monitoring, automotive 
applications, emission monitoring, and aerospace 
vehicle health monitoring [1]. Semiconducting 
metal-oxides have been known for decades to be 
suitable for gas sensing purposes. There are many 
reports on applications of these materials as gas 
sensor devices due to their small dimensions, low 
cost, and high compatibility with microelectronic 
processing [2, 3]. Amongst all semiconducting 

metal-oxides, Tin oxide (SnO2) is the most widely 
studied gas sensor material and the most 
commercially available chemical gas sensors 
exploit a SnO2 element [4, 5]. Although these 
oxides themselves are catalytically active, they are 
rarely used in isolation as their gas sensing 
characteristics are usually enhanced by using a 
small amount of noble metal catalyst such as 
palladium (Pd) and platinum (Pt) [6]. It is widely 
accepted that the presence of noble metal elements 
(Pt, Pd, Au, Ag, etc.) on the surface of a metal 
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oxide enhances the interaction of 
reducing/oxidizing gases with the absorbed oxygen 
on the surface [3]. Besides improving the 
selectivity, catalysts also modulate the electron 
transport properties of the sensing SnO2 layer and 
improved response characteristics are obtained. 
The introduction of catalysts influences grain size, 
the shape of crystallites, bulk and surface 
stoichiometry, properties of inter-crystalline 
barriers, and bulk electro-physical properties [7]. 
Table 1 has summarized maximum response in 
exposing to LPG in various SnO2 based sensors at 
different temperatures.  

 
Table 1. Maximum response to LPG in various SnO2- based 
sensors at different temperatures. 

Sensor type LPG 
 (in ppm) 

Operating 
Temperature

Response 

SnO2 Thick film 10,000 350 0.93 [8] 
SnO2 Thick film 
SnO2 Thick film 
SnO2 Thick film 
SnO2 Thick film 
SnO2 NWs 
SnO2 Hierarchica

200 
1000 
800 
1000 
500 
500 

300 
350 
400 
345 
350 
350 

0.7   [9] 
3.68 [10] 
1.38 [11] 
0.1   [12] 
3.5   [5] 
8.1   [5] 

TGS 2612 Figaro 1000 VH=5V 2.1   [13] 

 
   In this work, we have synthesized thin films 
devices comprising Pd-coated SnO2 NWs using 
combination of CVD and spray pyrolysis 
techniques. Effects of Pd as a catalyst on the 
modification of gas sensing properties of SnO2 
NWs were studied using a home-made set-up for 
measuring sensing characteristics. The 
morphologies of the undoped and Pd-doped SnO2 
nanowires were observed by field emission 
scanning electron microscopy (FESEM; Hitachis-
4160) and high resolution transmission electron 
microscopy (HR-TEM; JEOL2100F) techniques. 
Conductometric gas sensing measurements showed 

high sensitivity with fast response time at a 
relatively low sensor working temperature.  
 
2. Experimental procedure 

Thin films of SnO2 NWs were deposited using 
CVD under a reactive ambient (100sccm of Ar and 
15sccm of O2) on top of quartz substrates. 
Precursor was composed of 0.5gr of SnO2 powder 
and 0.5gr carbon powder. Alumina boat was used 
to heat the precursors up to 1050oC with the rate of 
7.5oC/min. Afterwards, various concentrations of 
the solution of palladium chloride (PdCl2) were 
deposited on the surface of SnO2 nanowire thin 
films by spray pyrolysis to enhance gas sensing 
parameters. Briefly, 1gr PdCl2 powder was solved 
in 100cc DI-water and ethanol (1:1 ratio), 0.1mL 
HCl was also added to the solution to get a 
transparent solution. To find the optimum amount 
of Pd on the surface of SnO2 NWs film, a series of 
samples with different amounts of 0.02M solution 
of PdCl2 (15, 25, 50, and 75cc) were sprayed at 
450oC, as optimised substrate temperature. Finally, 
samples were annealed at 300oC for two hours on 
the flow of 100sccm Ar to get rid of any solvent 
traces. Moreover, annealing at 300oC transforms 
the amorphous SnO2 films into a poly-crystalline 
structure [4]. For the fabrication of sensor devices 
and to achieve good contact for the electrical 
measurements, pairs of Au electrodes were 
deposited onto on top of the SnO2/Pd thin film 
samples (200nm thickness, 5mm distance. A 
sample area is 1cm×1cm (Fig. 4(a))), using 
vacuum thermal evaporation by molybdenum boat. 
Gas sensing measurements were taken by a testing 
apparatus consisting of a Teflon test chamber with 
a controllable heater, mass flow controllers, and a 
PC-based (PSIP 86D) multimeter. Finally, four 
kinds of samples with 15, 25, 50 and 75cc sprayed 
PdCl2 were prepared which indexed as A, B, C and 
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Fig.4. Gas sensing response of fabricated sensors toward ethanol vapor (a) Sensor A at 100oC, (b) Sensor B at 100oC, (c) Sen
100oC and (d) Sensor D at 100oC. 

   
  

Fig. 5. Gas sensing response of fabricated sensors for LPG sensing response: (a) Undoped SnO2 nanowires at 250oC, (b) Sens
200oC, (c) Sensor B 200oC, (d) Sensor C 200oC and (e) Sensor D 200oC. 
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acting as donator or acceptor sites. At working 
temperature of the device in air, SnO2 sensor 
adsorbs oxygen (O2-) and moisture (OH-), which 
traps electrons from the conduction band of SnO2. 
In the presence of target gases, two typical 
interactions cause a decrease in resistance of SnO2. 
First, the target gas chemisorbed at the active site 
on SnO2 surface. Second, the adsorbed oxidizing 
agent (O2-) oxidized the target gases, resulting in 
electron transferring from target gases to O2-. Most 
of electrons which have been trapped by O2- 
transfer to the SnO2 surface, which increased 
electronic conductivity of SnO2 sensors [15]. Upon 
removal of reducing species or introduction of air 
or oxygen, the mechanism is reversed and the 
conductivity returns to its original state. The 
adsorption of atmospheric oxygen on the sensor 
surface forms ionic species such as O–2 and O– 
which acquire electron from the conduction band. 
The reaction kinetics is as follows [16]: 
O2 (gas) →O2 (ads)          (1) 
O2 (ads) + e–→ O–2 (ads)          (2) 
O– (ads) + e–→ 2O– (ads)          (3) 

The oxygen species react with ethanol [17] and 
LPG [18, 19] through complex series of reactions 
as follows: 
C2H5OH + 6O– → 3H2O + 2CO2 + 6e– (4) 
C4H10 + 13O– → 5H2O + 4CO2 + 13e– (5) 

The above reactions take place only if gases are 
completely oxidized on the sensor surface. By 
looking at these reactions, it seems that LPG does 
not oxidize completely and may be following the 
reaction scheme given below [20]: 
C4H10 + 2O– → C4H8 − O + H2O + 2e– (6) 

Partially oxidized gases may not change the 
conductivity of sensor element drastically, which 
might have happened in present study of LPG 
sensing. The observed enhanced response 
characteristics for ethanol vapor may be attributed 

to the activation of spill-over of sensing gas 
molecules by the presence of Pd catalyst particles 
on to the surface of sensing SnO2 layer. In the 
C2H5OHvapor and LPG atmosphere, the sensing 
response of sensor B was much better than those of 
other sensors. This can be attributed to the smaller 
size of Pd particles coated on top of SnO2 nanowire 
films. 
 

4. Conclusion  
Palladium nanoparticles were deposited on the 

surface of SnO2 NWs films by spray pyrolysis to 
enhance gas sensing performances. The undoped 
and Pd-doped SnO2 hollow nanofibers showed 
significantly different responses to C2H5OH and 
LPG according to the sensor temperature and Pd 
doping concentration. The sensing response 
characteristics of the SnO2/Pd NWs sensor were 
studied over a temperature range of 50 to 300oC. 
The response and recovery time were estimated to 
be about 40s and about 90s, respectively for LPG. 
Sensor B with 25cc Pd shows C2H5OH vapor gas 
sensing response time and recovery time as short 
as 50s and 10s respectively with high response of 
about 120 which is remarkable in comparison with 
other reports in this area. The capability of the 
selective gas sensors was explained in terms of the 
analyte gases as a function of sensor temperature 
and Pd doping concentration.  
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