Synthesis and characterization of Gd2O2 S: Tb3+ phosphor powder for X-ray imaging detectors

Document Type: Research Paper


1 Department of Physics, Payame noor University (PNU), Tehran, Iran

2 Nuclear Science and Technology Research Institute, Karaj, Iran



Gadolinium oxysulfide phosphor doped with trivalent terbium have been synthesized using urea homogenous precipitation and followed by sulfurization at 800 °C under argon atmosphere. Structural and morphological of synthesized phosphor powder were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FT-IR). Hexagonal structure of Gd2O2S:Tb3+ phosphor was confirmed by XRD. Compositional analysis were carried out by energy dispersive x-ray (EDX) and particle induced x-ray emission (PIXE). Photoluminescence emission spectra was measured by fluorescent spectrometer. A sedimentation technique is used to deposit the phosphor powder directly on the glass substrate using poly vinyl alcohol as a paste. A number of phosphor layers have been synthesized with the layer thickness ranging from 150 to 268 µm. Measurement results of x-ray conversion efficiency for layers were investigated using 300 kVp X-ray tube in which the maximum light output and contrast were observed for layer with a thickness of 193 µm. Oxysulfide phosphor layer was analyzed by ion beam induced luminescence (IBIL). Emitting of green light from phosphor layer confirm its luminescence property.



The rare earth oxysulfide phosphors have gained considerable attraction in recent years due to their advantages such as high luminescence efficiency [1]. These materials are widely used as luminescent host materials for X-ray application because of their high conversion efficiency (12–25%) of the exciting radiation [2-5]. Terbium activated gadolinium oxysulfide (Gd2O2S:Tb), one of the rare earth oxysulfide group of phosphors, is known to be an efficient phosphor and shows bright green luminescence and high efficiency under UV, cathode-ray and X-ray excitations [6].

Terbium activated gadolinium oxysulfide phosphors were prepared by different methods such as flux method [7], combustion [8] and solvothermal [9]. However, in most of these methods to achieve the desired size, the particles must be milled, which causes defects in the surface and non-radiative recombination of electrons and holes with a drop in the luminescence efficiency. Among these methods, the homogeneous precipitation method [1] is more appropriate than others due to its simplicity, rapidity and economy.

Herein, gadolinium oxysulfide phosphor doped with trivalent terbium was prepared via urea homogenous precipitation and followed by sulfurization at 800 °C under argon atmosphere.


Gadolinium oxide and terbium activated oxysulfide were prepared through homogenous precipitation method [1].

For preparing of gadolinium oxide, typically, 0.54 g Gd(NO3)3 . 6H2O was dissolved in 25 mL water (0.5 M), then diluted to 500 mL with deionized water and heated for 30 min at 90 °C. After that, urea solution (30 g urea dissolved in 120 mL water) was added to it and stirred for 30 min at 90°C. The mixture solution was aged for a period when visible bluish tint occurred. After aging, the precipitates generated were observed on the bottom of the beaker. The resulting precipitate was separated by centrifugation (4000 rpm), washed two times with deionized water and once with ethanol, then was dried at 100℃ for 24 h. The dried precipitate was calcined at 800℃ for 1 h to obtain the white Gd2O3 powder.

Terbium activated gadolinium oxysulfide were also prepared through homogenous precipitation method via two steps. In the first step, typically, 25 mL Gd(NO3)3 . 6H2O (0.5 M) and the proper amount of Tb(NO3)3. 5H2O (0.01 M) stock solutions were weighed out, mixed, then diluted to 500 mL with deionized water and heated for 30 min at 90 °C. After that, urea solution (30 g dissolved in 120 mL water) was added to it and stirred for 30 min at 90 °C. The obtained solution was aged overnight. After that, urea solution (30 g urea dissolved in 120 mL water) was added to it and stirred for 30 min at 90 °C. The mixture solution was aged for a period when visible bluish tint occurred. After aging, the precipitate generated was observed on the bottom of the beaker. The resulting precipitate was separated by centrifugation (4000 rpm), washed two times with deionized water and once with ethanol, and was dried at 100℃ for 24 h. The dried precipitate was calcined at 800℃ for 1 h to obtain the yellowish Gd2O3:Tb powder.

In the second step, the sulfurization of oxide was carried out by the solid-gas reaction. A mix of sulfur and the Gd2O3:Tb3+ powders (ratio of S to Gd2O3:Tb3+ was 1 to 1.5) was placed into a quartz tube and the sulfurization reaction was performed at 900℃ under argon atmosphere. The heating temperature of the sulfur powder was 400℃, and the sulfur vapor flow was controlled by adjusting the intensity of argon gas flow. After the reaction was kept for 1 h, the sulfurization was stopped and only the argon gas flow was supplied until the sample was cooled to the room temperature. Finally, the white Gd2O2S:Tb3+ powder was obtained.

Terbium activated gadolinium oxysulfide phosphor layers were fabricated using by sedimentation method [10]. In this method, the coating solution was first prepared by dissolving 15 g polyvinyl alcohol (PVA) into 500 mL deionized water with proper agitation. After the PVA was fully dissolved, the solution poured into a, flat-bottomed Plexiglas vessel for mixing with phosphor particles. The solution in the vessel was stirred, then a small amount of the additives was introduced followed by gradual addition of weighted phosphor particles. The overall mixing process must be subject to agitation until the phosphor particles were able to fully disperse into the polymer matrix. Here, the rate of agitation played a critical role. It must yield enough centrifugal force to keep the phosphor particles suspended in solution for dispersion. Agitation was terminated when the particles were fully dispersed and then a homogeneous coating system was achieved. The scintillator layer thickness was varied by varying the amount of used Gd2O2S:Tb3+ powder: 0.9, 1.9 and 2.9 g. The amount of used PVA as a binder was constant (15 g). After that, the glass substrates introduced to solutions and put settled for different times, as shown in Table. 1. When all of the particles settled down completely, the phosphor-coated substrates were removed and calcined at 60 °C in an oven for 1 hr. Fig. 1(a) and (b) show Plexiglas vessel containing PVA solution and phosphor coated layers, respectively.

The crystal structures were identified by a powder X-ray diffractometer (XRD, Inel model Equnox-3000) employing Cu Ka radiation (k=1.5418 A°). The XRD Patterns of phosphors were confirmed by comparing with the JCPDS (Joint Committee on Powder Diffraction Standards) data. The morphology of the synthesized phosphors was imaged by scanning electron microscopy (SEM, Tescan model MIRA3 XMU). Chemical composition of the synthesized phosphors was determined by Energy dispersive x-ray spectroscopy (EDS, Samx) and particle induced x-ray emission (PIXE). The PIXE analysis was carried out using conventional RBS-PIXE reaction chamber at the facilities of Van de Graff Lab in Tehran [11].  A 2000 keV proton beam of about 1 mm diameter was applied for analysis. The X-ray spectra were collected by a Si(Li) X-ray detector placed at a scattering angle of 135°.  FT-IR spectra (4000–400 cm-1) in KBr were recorded using a Bruker-vertex 70 spectrometer. Emission spectra of Gd2O2S:Tb3+ were measured by a Varian Carry Eclipse fluorescent spectrometer at room temperature with a xenon flash lamp as excitation source. An X-ray tube model Baltospot Ceram35 was used for irradiation of prepared phosphor layers.


Terbium activated gadolinium oxysulfide was synthesized through two steps. In the first step, spherical hydroxyl carbonate precursor powder was prepared using the urea homogeneous precipitation method at over 90˚C [12]. The homogeneous precipitation technique is based on the slow hydrolysis of Gd3+ ion for the preparation of Gd(OH)CO3. The whole process can be simplified as the release of CO2 and NH3 by urea decomposition, followed by the sequential addition of the ligands OH-1 and CO32- to the Gd3+ ion until the concentration of reactants reaches critical supersaturation and then precipitation occurs [13]. The chemical reactions to obtain precursors are given below:

H2NCONH2 → NH4+ + OCN-

OCN- + 2H+ + 2H2O → H2CO3 + NH4+

[GdOH(H2O)n]2+ + H2CO3 → Gd(OH)CO3. H2O + (n-1) H2O

In the second step, obtained precipitate was converted to the gadolinium oxysulfide through sulfurization treatment under argon atmosphere.

The Fig. 2 shows the XRD patterns of different synthesized samples. It is obvious from the XRD patterns (curve (a)), the diffraction peaks at 2𝜃= 28.6, 33.1, 47.5, and 56.4 are for (222), (400), (440) and (622) of cubic Gd2O[14], in good agreement with reported data (JCPDS Card number 43-1014). The high intensity of the diffraction peaks in (curve (b)) indicates good crystallinity of the Gd2O3:Tb3+. This also means that the Tb3+ions have been effectively built into the host lattice of Gd2O[15]. After the Gd2O3:Tb3+ powders were sulfurized at 800℃ for 1 h under nitrogen atmosphere containing sulfur vapor (curve (c)), the XRD lines of sample are matched with the data of JCPDS Card No.26-1422, which shows pure hexagonal phase of Gd2O2S:Tb3+ powder.

Fig. 3 shows the FTIR spectra of the Gd2O(curve (a)), Gd2O3:Tb3+ (curve (b)) and Gd2O2S:Tb3+ (curve (c)). For the precursor, the broad absorption band around 3460 cm−1 can

be assigned to O−H stretching vibration; the bands around 1460 and 1630 cm−1 result from C−O asymmetrical stretching vibration; the peak that appears at 1042 cm−1 can be assigned to C−O symmetric stretching vibration; the strong peak at 420-510 cm−1 associated with the vibration of Gd-O and Gd-S [16] is observed, indicating the formation of Gd2O2S:Tb3+.

Spherical nano-particles formation of Gd2O2S:Tb3+ phosphor were confirmed by SEM images as shown in Fig. 4. According to it, the phosphor particles are well separated from each other and exhibit smooth surfaces with a spherical shape.

The chemical composition of gadolinium oxide, terbium doped gadolinium oxide and terbium doped gadolinium oxysulfide were analyzed by EDS and the results are shown in Fig. 5. The results of quantitative analysis confirm the presence of Gd and O in Gd2O3 (graph (a)), Gd, O and Tb in Gd2O3: Tb3+ (graph (b)) and Gd, O, S and Tb in Gd2O2S: Tb3+ (graph (c)), which are compatible with the obtained result from particle induced X-ray emission (PIXE) for c sample (Fig. 6).

The Photoluminescence emission spectra of the Gd2O2S:Tb3+ particles excited at 254 nm respectively is shown in Fig. 7. The luminescence peaks in the figure arise from the transitions of 5D3 and 5D4 excited state levels to 7FJ (J= 0–6) ground state levels, respectively, and belong to the characteristic emission of Tb3+. The emission lines between the 370 and 450 nm correspond to the 5D37FJ (J= 0–6) transitions, and the emission lines between the 480 and 600 nm correspond to the 5D47FJ (J= 3, 4, 5, 6) transitions [17].

Moreover, the photoluminescence property of oxysulfide phosphor layer was investigated by ion beam induced luminescence (IBIL). As is shown in Fig. 8, emitting of green light from phosphor layer confirm its luminescence property.

Eight of Gd2O2S: Tb3+scintillator layers with various thickness were prepared and optically coupled with a CCD image sensor for X-ray imaging performance measurement. Table. 2 shows the thickness of prepared layers.

The pixelated Gd2O2S: Tb3+ scintillator layers were tested by 300 kVp X-ray beam at 5 mA as beam current. The light outputs were measured in a dark boxby a CCD camera. The relative light output of the layers with various thickness was estimated from the pixel values of the CCD images. Fig. 9 shows the light intensity in terms of a number of pixel for phosphor layers.

As seen in Fig. 9, maximum light output ofthe Gd2O2S: Tb3+ scintillator layer was obtained for sample no.5 with 193 µm thickness.The effect of different thickness on the contrast is also presented in Table. 3. The results listed in this table shows that the contrast is increased by increasing the thickness of the phosphor layer, then is reduced.The reason may be that a thicker layer of phosphor can absorb more radiation, which increases the dispersion and so reduce the contrast.


In this study, green phosphor Gd2O2S:Tb3+ scintillator were obtained using urea homogeneous precipitation method. Hexagonal structure of Gd2O2S:Tb3+ phosphor powder was confirmed by XRD. Obtained phosphor have spherical shape. The phosphor powders were deposited on the glass substrates using poly vinyl alcohol as a paste via sedimentation method. The effect of thickness layer on light output and contrast were investigated. The results show, the optimum thickness was 193 µm. Moreover, emitting of green light from phosphor layer confirm its luminescence property.


The authors wish to thank Nuclear Science & Technology Research Institute.


The authors declare that there are no conflicts of interest regarding the publication of this manuscript.



1. Tian Y, Cao W-H, Luo X-X, Fu Y. Preparation and luminescence property of Gd2O2S:Tb X-ray nano-phosphors using the complex precipitation method. Journal of Alloys and Compounds. 2007;433(1-2):313-7.

2. Issler SL, Torardi CC. Solid state chemistry and luminescence of X-ray phosphors. Journal of Alloys and Compounds. 1995;229(1):54-65.

3. Wickersheim KA, Alves RV, Buchanan RA. Rare Earth Oxysulfide X-Ray Phosphors. IEEE Transactions on Nuclear Science. 1970;17(1):57-60.

4. Shepherd JA, Gruner SM, Tate MW, Tecotzky M. Study of persistence in gadolinium oxysulfide x-ray phosphors. X-Ray and Ultraviolet Sensors and Applications; 1995/06/15: SPIE; 1995.

5. J.P. Creasey, G.C. Tyrrell, SPIE-The International Society for Optical Engineering. 3942 (2000) 114.

6. Giakoumakis GE, Nomicos CD, Sandilos PX. Absolute efficiency of Gd2O2S:Tb screens under fluoroscopic conditions. Physics in Medicine and Biology. 1989;34(6):673-8.

7. Popovici E-J, Muresan L, Hristea-Simoc A, Indrea E, Vasilescu M, Nazarov M, et al. Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S:Tb phosphor by the flux method. Optical Materials. 2004;27(3):559-65.

8. Bang J, Abboudi M, Abrams B, Holloway PH. Combustion synthesis of Eu-, Tb- and Tm- doped Ln2O2S (Ln=Y, La, Gd) phosphors. Journal of Luminescence. 2004;106(3-4):177-85.

9. Young Park J, Chae Jung H, Seeta Rama Raju G, Kee Moon B, Jeong JH, Hwan Kim J. Solvothermal synthesis and luminescence properties of Tb3+-doped gadolinium aluminum garnet. Journal of Luminescence. 2010;130(3):478-82.

10. Hu X, Han Z, Li G, Gu M. Microstructure and properties of Ti–Si–N nanocomposite films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2002;20(6):1921.

11. Kakuee OR, Fathollahi V, Lamehi-Rachti M, Oliaiy P, Seyedi H, Safa S, et al. Ion Beam Analysis of Hydrogen-Treated Ti/TiN Protective Nanomultilayers. Acta Physica Polonica A. 2012;122(1):132-7.

12. Vecht A, Gibbons C, Davies D, Jing X, Marsh P, Ireland T, et al. Engineering phosphors for field emission displays. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 1999;17(2):750.

13. Willard HH, Tang NK. A Study of the Precipitation of Aluminum Basic Sulfate by Urea1. Journal of the American Chemical Society. 1937;59(7):1190-6.

14. Choi J, Tseng T-K, Davidson M, Holloway PH. Enhanced photoluminescence from Gd2O3:Eu3+ nanocores with a Y2O3 thin shell. Journal of Materials Chemistry. 2011;21(9):3113.

15. Jia G, Yang M, Song Y, You H, Zhang H. General and Facile Method To Prepare Uniform Y2O3:Eu Hollow Microspheres. Crystal Growth & Design. 2009;9(1):301-7.

16. Hirai T, Orikoshi T. Preparation of yttrium oxysulfide phosphor nanoparticles with infrared-to-green and -blue upconversion emission using an emulsion liquid membrane system. Journal of Colloid and Interface Science. 2004;273(2):470-7.

17. Kang S-S, Park J-K, Choi J-Y, Cha B-Y, Cho S-H, Nam S-H. Electrical characteristics of hybrid detector based Gd2O2S:Tb-Selenium for digital radiation imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2005;546(1-2):242-6.